Skip to main content

Antithrombin and Heparin Cofactor II: Structure and Functions

  • Chapter
Recent Advances in Thrombosis and Hemostasis 2008
  • 1410 Accesses

Abstract

Antithrombin (AT) and heparin cofactor II (HOI) are plasma serpins that function as principal regulators of blood coagulation. These serpins inhibit their target proteinases by forming an inactive enzyme-inhibitor complex through an interaction between their reactive center and the active site of the proteinase. Among the coagulation proteinases, AT mainly inhibits factor Xa and thrombin, and HCII exclusively inhibits thrombin. However, both AT and HCII by themselves are poor inhibitors of coagulation proteinases as these reactions proceed at a slow rate and are time-dependent. These serpins also require glycosaminoglycans for their physiological functions. By binding to glycosaminoglycans, a conformational change occurs in the reactive center loop (RCL), which activates these serpins to become a more efficient inhibitor of coagulation proteinases. The physiological cofactor for AT is heparan sulfate proteoglycans on endothelial cells, and that for HCII is dermatan sulfate proteoglycans on vascular smooth muscle cells. The physiological importance of AT as an anticoagulant in the circulation is well supported by a number of thrombotic disorders in patients with AT deficiency. However, the physiological function of HCII as an anticoagulant is unclear, as HCII deficiency is not a significant risk factor for venous or arterial thrombosis. Recent crystallographic analyses of monomeric native AT variant, AT-thrombin, or factor Xa-pentasaccharide complexes, as well as HCII-thrombin complex, have revealed more detailed mechanisms of proteinase inhibition by these serpins and mechanisms of glycosaminoglycan-dependent enhancement of the reaction rates, together with some revisions of our previous knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lane DA, Bayston T, Olds RJ, et al (1997) Antithrombin mutation database: 2nd (1997) Update. Thromb Haemost 77:197–211

    Article  PubMed  CAS  Google Scholar 

  2. Tollefsen DM (2002) Heparin cofactor II deficiency. Arch Pathol Lab Med 126:1394–1400

    PubMed  CAS  Google Scholar 

  3. Johnson DJD, Langdown J, Li W, et al (2006) Crystal structure of monomeric native antithrombin reveals a novel reactive center loop conformation. J Biol Chem 281:35478–35486

    Article  PubMed  CAS  Google Scholar 

  4. Johnson D, Li W, Adams T, et al (2006) Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation EMBO J 25:2029–2037

    Article  PubMed  CAS  Google Scholar 

  5. Baglin TP, Carrell RW, Church FC, et al (2002) Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci U S A 99:11079–11084

    Article  PubMed  CAS  Google Scholar 

  6. Petersen TE, Dudek-Wojciechowska G, Sottrup-Jensen L, et al (1979) Primary structure of antithrombin III (heparin cofactor): partial homology between α1-antitrypsin and antithrombin III. In: Collen D, Wiman B, Verstraete M (eds) The physiological inhibitors of blood coagulation and fibrinolysis. Elsevier Science Publishers, Amsterdam, pp 43–54

    Google Scholar 

  7. Bock SC, Wion KL, Vehar GA, et al (1982) Cloning and expression of the cDNA for human antithrombin III. Nucleic Acids Res 10:8113–8125

    Article  PubMed  CAS  Google Scholar 

  8. Olds RJ, Lane DA, Chowdhury V, et al (1993) Complete nucleotide sequence of the antithrombin gene: evidence for homologous recombination causing thrombophilia. Biochemistry 32:4216–4224

    Article  PubMed  CAS  Google Scholar 

  9. Conard J, Brosstad F, Larsen ML, et al (1983) Molar antithrombin concentration in normal human plasma. Haemostasis 13:363–368

    PubMed  CAS  Google Scholar 

  10. Collen D, Schetz J, de Cock F, et al (1977) Metabolism of antithrombin III (heparin cofactor) in man: effects of venous thrombosis and of heparin administration. Eur J Clin Invest 7:27–35

    Article  PubMed  CAS  Google Scholar 

  11. Peterson CB, Blackburn MN (1985) Isolation and characterization of an antithrombin III variant with reduced carbohydrate content and enhanced heparin binding. J Biol Chem 260:610–615

    PubMed  CAS  Google Scholar 

  12. Stein PE, Carrell RW (1995) What do dysfunctional serpins tell us about molecular mobility and disease? Nat Struct Biol 2:96–113

    Article  PubMed  CAS  Google Scholar 

  13. De Agostini AI, Watkins SC, Slayter HS, et al (1990) Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: antithrombin binding on cultured endothelial cells and perfused rat aorta. J Cell Biol 111:1293–1304

    Article  PubMed  Google Scholar 

  14. Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation Nature 407:923–926

    Article  PubMed  CAS  Google Scholar 

  15. Peterson CB, Noyes CM, Pecon JM, et al (1987) Identification of a lysyl residue in antithrombin which is essential for heparin binding. J Biol Chem 262:8061–8065

    PubMed  CAS  Google Scholar 

  16. Liu CS, Chang JY (1987) The heparin binding site of human antithrombin III: selective chemical modification at Lysl 14, Lysl25, and Lys287 impairs its heparin cofactor activity. J Biol Chem 262:17356–17361

    PubMed  CAS  Google Scholar 

  17. Chang JY (1989) Binding of heparin to human antithrombin III activates selective chemical modification at lysine 236: Lys-107, Lys-125 and Lys-136 are situated within the heparin-binding site of antithrombin III. J Biol Chem 264:3111–3115

    PubMed  CAS  Google Scholar 

  18. Sun XJ, Chang JY (1990) Evidence that arginine-129 and arginine-145 are located within the heparin binding site of human antithrombin III. Biochemistry 29:8957–8962

    Article  PubMed  CAS  Google Scholar 

  19. Koide T, Odani S, Takahashi K, et al (1984) Antithrombin III Toyama: replacement of arginine 47 by cysteine in hereditary abnormal antithrombin III that lacks heparin-binding ability. Proc Natl Acad Sci USA 81:289–293

    Article  PubMed  CAS  Google Scholar 

  20. Arocas V, Bock SC, Olson ST, et al (1999) The role of Arg46 and Arg47 of antithrombin in heparin binding. Biochemistry 38:10196–10204

    Article  PubMed  CAS  Google Scholar 

  21. Desai U, Swanson R, Bock SC, et al (2000) Role of arginine 129 in heparin binding and activation of antithrombin. J Biol Chem 275:18976–18984

    Article  PubMed  CAS  Google Scholar 

  22. Arocas V, Bock SC, Raja S, et al (2001) Lysine 114 of antithrombin is of crucial importance for the affinity and kinetics of heparin pentasaccharide binding. J Biol Chem 276:43809–43817

    Article  PubMed  CAS  Google Scholar 

  23. Schedin-Weiss S, Desai UR, Bock SC, et al (2002) Importance of lysine 125 for heparin binding and activation of antithrombin. Biochemistry 41:4779–4788

    Article  PubMed  CAS  Google Scholar 

  24. Jin L, Abrahams JP, Skinner R, et al (1997) The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A 94:14683–14688

    Article  PubMed  CAS  Google Scholar 

  25. Carrell RW, Stein PE, Fermi G, et al (1994) Biological implications of a 3 A structure of dimeric antithrombin. Structure 2:257–270

    Article  PubMed  CAS  Google Scholar 

  26. Schreuder HA, de Boer B, Dijkema R, et al (1994) The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature Struct Biol 1:48–54

    Article  PubMed  CAS  Google Scholar 

  27. Izaguirre G, Olson ST (2006) Residues Tyr253 and Glu255 in strand 3 of beta-sheet C of antithrombin are key determinants of an exosite made accessible by heparin activation to promote rapid inhibition of factors Xa and IXa. J Biol Chem 281:13424–13432

    Article  PubMed  CAS  Google Scholar 

  28. Ishiguro K, Kojima T, Kadomatsu K, et al (2000) Complete antithrombin deficiency in mice results in embryonic lethality. J Clin Invest 106:873–878

    Article  PubMed  CAS  Google Scholar 

  29. Herzog R, Lutz S, Blin N, et al (1991) Complete nucleotide sequence of the gene for human heparin cofactor II and mapping to chromosomal band 22qll. Biochemistry 30:1350–1357

    Article  PubMed  CAS  Google Scholar 

  30. Jaffe EA, Armellino D, Tollefsen DM (1985) Biosynthesis of functionally active heparin cofactor II by a human hepatoma-derived cell line. Biochem Biophys Res Commun 132:368–374

    Article  PubMed  CAS  Google Scholar 

  31. Tollefsen DM, Pestka CA (1985) Heparin cofactor II activity in patients with disseminated intravascular coagulation and hepatic failure. Blood 66:769–774

    PubMed  CAS  Google Scholar 

  32. Tollefsen DM, Pestka CA, Monafo WJ (1983) Activation of heparin cofactor II by dermatan sulfate. J Biol Chem 258:6713–6716

    PubMed  CAS  Google Scholar 

  33. Tollefsen DM (1997) Heparin cofactor II. Adv Exp Med Biol 425:35–44

    PubMed  CAS  Google Scholar 

  34. Maimone MM, Tollefsen DM (1988) Activation of heparin cofactor II by heparin oligosaccharides. Biochem Biophys Res Commun 152:1056–1061

    Article  PubMed  CAS  Google Scholar 

  35. Ragg H, Ulshofer T, Gerewitz J (1990) On the activation of human leuserpin-2, a thrombin inhibitor, by glycosaminoglycans. J Biol Chem 265:5211–5218

    PubMed  CAS  Google Scholar 

  36. Van Deerlin VMD, Tollefsen DM (1991) The N-terminal acidic domain of heparin cofactor II mediates the inhibition of α-thrombin in the presence of glycosaminoglycans. J Biol Chem 266:20223–20231

    PubMed  Google Scholar 

  37. He L, Vicente CP, Westrick et al (2002) Heparin cofactor II inhibits arterial thrombosis after endothelial injury. J Clin Invest 109:213–219

    PubMed  CAS  Google Scholar 

  38. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Koide, T. (2008). Antithrombin and Heparin Cofactor II: Structure and Functions. In: Tanaka, K., Davie, E.W., Ikeda, Y., Iwanaga, S., Saito, H., Sueishi, K. (eds) Recent Advances in Thrombosis and Hemostasis 2008. Springer, Tokyo. https://doi.org/10.1007/978-4-431-78847-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-78847-8_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-78846-1

  • Online ISBN: 978-4-431-78847-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics