Advertisement

Double KO Mice of β-1,4-N-acetylgalactosaminyltransferase (GM2/GD2 Synthase) and α-2,8-sialyltransferase (GD3 Synthase)

  • Koichi Furukawa
  • Orie Tajima
  • Yusuke Ohmi
  • Keiko Furukawa

Abstract

Gangliosides have been considered to play important roles in the development and differentiation of nervous systems in vertebrates. They have been also considered to have neurotrophic activity. In order to directly address these biological functions, we generated knockout mice of β-1,4-N-acetylgalactosaminyltransferase gene (Takamiya et al. 1996) that is responsible for the synthesis of GM2 and GD2 (and GA2), and those of α-2,8-sialyltransferase gene (Okada et al. 2000) that is responsible for the synthesis of GD3. These KO mice showed relatively mild abnormal phenotypes than expected. This seemed due to the compensatory effects of the remaining glycolipids in the individual KO mice (Furukawa et al. 2004). Therefore, we mated these two KO mice in order to generate double KO mice in which only GM3 should remain. Now we can largely eliminate the compensatory effects of remaining glycolipids and correctly observe the effects of ganglioside deficiency. DKO mutants were born with almost normal appearance, and grew up for a while after birth. However, they demonstrated marked neurodegeneration from early stages of life, and various abnormal phenotypes probably caused by neurodegeneration (Inoue et al. 2002).

Keywords

Compensatory Effect Neurotrophic Activity Marked Neurodegeneration Sialyltransferase Gene Ganglioside Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furukawa K, Tokuda N, Okuda T, Tajima O, Furukawa K (2004) Glycosphingolipids in engineered mice: insights into function. Semin Cell Dev Biol 15:389–396PubMedCrossRefGoogle Scholar
  2. Inoue M, Fujii Y, Furukawa K, Okada M, Okumura K, Hayakawa T, Furukawa K, Sugiura Y (2002) Refractory skin injury in the complex knock-out mice expressing only GM3 ganglioside. J Biol Chem 277:29881–29888PubMedCrossRefGoogle Scholar
  3. Okada M, Itoh M, Haraguchi M, Okajima T, Inoue M, Ohishi H, Matsuda Y, Iwamoto T, Kawano T, Fukumoto S, Miyazaki H, Furukawa K, Aizawa S, Furukawa K (2002) b-Series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apotosis, but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277:1633–1636PubMedCrossRefGoogle Scholar
  4. Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, Fukumoto S, Haraguchi M, Takeda N, Fujimura K, Sakae M, Kishikawa M, Shiku H, Furukawa K and Aizawa S (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides, but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93:10662–10667PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Koichi Furukawa
    • 1
  • Orie Tajima
    • 1
  • Yusuke Ohmi
    • 1
  • Keiko Furukawa
    • 1
  1. 1.Department of Biochemistry IINagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations