Advertisement

Blood Group Antigens: Blood Group Carbohydrate Antigens

  • Koichi Furukawa
  • Koichi Iwamura
  • Keiko Furukawa

Abstract

The most popular blood group antigen system, ABO antigens had been known to consist of alpha1,2-fucosylated galactose substituted with alpha1,3-N-acetylgalactosamine (A) or galactose (B). These biochemical results were clearly confirmed and further investigated by the molecular cloning of blood group A synthase cDNA (Yamamoto et al. 1990a, 1990b). It was demonstrated that blood group A synthase gene is located at the human 9th chromosome ABO locus with blood group B synthase as an allelic gene having 7 nucleotides mutation in the coding region (Fig. 1). Blood group O gene is also present at the same locus with no enzymatic activity due to one nucleotide deletion. As for P1/P/pk/p blood group system, P/pk/p blood group system has been clarified to be based on globo-series glycosphingolipids, i.e., P is globoside (Gb4, globotetraosylceramide) (Okajima et al. 2000), pk is Gb3 (globotriaosylceramide) that is accumulated in the deficiency of Gb4 synthase, and p means individuals lacking the activity of Gb3 synthesis (Furukawa et al. 2000; Table 1). P1 is, in turn, alpha4Gal- structure substituted on a neolacto-series core structure. There has been a long-time controversy on the identity between P1 synthase and Gb3 synthase (Kojima et al. 2000; Table 2). Iwamura et al. (2003) demonstrated P1 is synthesized by Gb3 synthase, suggesting that there should be differences in the transcription efficiency of Gb3 synthase gene between P1 and P2 individuals.

Keywords

Blood Group Blood Group Antigen Nucleotide Deletion Blood Group System Major Blood Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furukawa K, Iwamura K, Uchikawa M, Sojka BN, Wiels J, Okajima T, Urano T, Furukawa K (2000) Molecular basis for the p phenotype: identification of distinct and multiple mutations in the a1,4-galactosyltransferase gene in Swedish and Japanese individuals. J Biol Chem 275:37752–37756PubMedCrossRefGoogle Scholar
  2. Iwamura K, Furukawa K, Uchikawa M, Birgitta NS, Kojima Y, Wiels J, Urano T, Furukawa K (2003) The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene: a clue to the solution of the P1/P2/p puzzle. J Biol Chem 278:44429–44438PubMedCrossRefGoogle Scholar
  3. Kojima Y, Fukumoto S, Furukawa K, Tetsuya O, Wiels J, Yokoyama K, Suzuki Y, Ohta M, Furukawa K (2000) Molecular cloning of Gb3/CD77 synthase, a glycosyltransferase that initiate the synthesis of globo-series glycosphingolipids. J Biol Chem 275:15152–15156PubMedCrossRefGoogle Scholar
  4. Okajima T, Nakamura Y, Uchikawa M, Haslam DB, Numata S, Furukawa K, Urano T, Furukawa K (2000) Expression cloning of human globoside synthase cDNAs: identification of β3 Gal-T3 as UDP-N-acetylgalactosamine: globotriaosylceramide β1,3-N-acetylgalactosaminyl-transferase. J Biol Chem 275:40498–40503PubMedCrossRefGoogle Scholar
  5. Yamamoto F, Marken J, Tsuji T, White T, Clausen H, Hakomori S (1990a) Cloning and characterization of DNA complementary to human UDP-GalNAc: Fuc alpha 1-2Gal alpha 1-3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem 265:1146–1151PubMedGoogle Scholar
  6. Yamamoto F, Clausen H, White T, Marken J, Hakomori S (1990b) Molecular genetic basis of the histoblood group ABO system. Nature 345:229–233PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Koichi Furukawa
    • 1
  • Koichi Iwamura
    • 1
  • Keiko Furukawa
    • 1
  1. 1.Department of Biochemistry IINagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations