Glycosyltransferase Family with β4GT Motif (β4Gal-T and β4GalNAc-T Family)

  • Takashi Sato
  • Hisashi Narimatsu


Glycosyltransferase genes can be classified into several families, which have several characteristic motifs in the amino acid sequence. This section briefly describes a glycosyltransferase family having β4GT motif (WGxEDD/V/W). This family contains seven β1,4-galactosyltransferases, six chondroitin sulfate synthases (see a separate section for details), and two β1,4-N-acetylgalactosaminyltransferases. These enzymes have an activity to transfer carbohydrates via β1,4 linkage irrespective of donor and acceptor carbohydrates. The members of β4GT family in human and mouse are summarized in Table 1.


293T Cell Keratan Sulfate Acceptor Substrate Glycosyltransferase Gene Enzyme Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, Iwakura Y (1997) Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. Embo J 16(8):1850–1857PubMedCrossRefGoogle Scholar
  2. Fiete D, Mi Y, Oats EL, Beranek MC, Baenziger JU (2007) N-linked oligosaccharides on the low density lipoprotein receptor homolog SorLA/LR11 are modified with terminal GaINAc-4-SO4 in kidney and brain. J Biol Chem 282(3):1873–1881PubMedCrossRefGoogle Scholar
  3. Gastinel LN, Cambillau C, Bourne Y (1999) Crystal structures of the bovine beta4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. Embo J 18(13):3546–3557PubMedCrossRefGoogle Scholar
  4. Gotoh M, Sato T, Kiyohara K, Kameyama A, Kikuchi N, Kwon YD, Ishizuka Y, Iwai T, Nakanishi H, Narimatsu H (2004) Molecular cloning and characterization of beta1,4-N-acetylgalactosaminyltransferases IV synthesizing N,N′-diacetyllactosediamine. FEBS Lett 562(1–3):134–140PubMedCrossRefGoogle Scholar
  5. Ito H, Kameyama A, Sato T, Sukegawa M, Ishida H, Narimatsu H (2007) Strategy for the fine characterization of glycosyltransferase specificity using isotopomer assembly. Nat Methods 4(7):577–582PubMedCrossRefGoogle Scholar
  6. Okajima T, Fukumoto S, Furukawa K, Urano T (1999) Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. J Biol Chem 274(41):28841–28844PubMedCrossRefGoogle Scholar
  7. Roseman DS, Baenziger JU (2000) Molecular basis of lutropin recognition by the mannose/GaINAc-4-SO4 receptor. Proc Natl Acad Sci USA 97(18):9949–9954PubMedCrossRefGoogle Scholar
  8. Sato T, Gotoh M, Kiyohara K, Kameyama A, Kubota T, Kikuchi N, Ishizuka Y, Iwasaki H, Togayachi A, Kudo T, Ohkura T, Nakanishi H, Narimatsu H (2003) Molecular cloning and characterization of a novel human beta 1,4-N-acetylgalactosaminyltransferase, beta 4GalNAc-T3, responsible for the synthesis of N,N′-diacetyllactosediamine, galNAc beta 1-4GlcNAc. J Biol Chem 278(48):47534–47544PubMedCrossRefGoogle Scholar
  9. Taniguchi N, Honke K, Fukuda M (2002) Handbook of Glycosyltransferases and Related Genes With contributions by numerous experts. Springer, BerlinGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Takashi Sato
    • 1
  • Hisashi Narimatsu
    • 1
  1. 1.Research Center for Medical GlycoscienceNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba, IbarakiJapan

Personalised recommendations