Sphingolipid Activator Proteins

  • Junko Matsuda


Glycosphingolipids (GSLs) are amphiphilic constituents of the outer leaflet of eukaryotic plasma membranes. In vivo degradation of GSLs takes place predominantly in the lysosome by the stepwise release of monosaccharide units from the nonreducing end of the oligosaccharide chain via specific exohydrolases (Fig. 1). Several of these enzymes need assistance of small glycoprotein cofactors, the so-called ‘sphingolipid activator proteins’. These are low molecular weight glycoproteins, which by themselves are catalytically inactive but are required as cofactors to facilitate interactions between membrane-bound hydrophobic sphingolipids and water-soluble exohydrolases in the lysosome, either by direct activation of their respective enzymes or as biological detergents that lift substrates out of the membrane in which sphingolipids are embedded. Five sphingolipid activation proteins (GM2 activator protein, and four saposins) encoded by two distinct genes are known. One gene encodes the GM2-activator protein, the other encodes prosaposin, the precursor protein of four saposins (Sandhoff et al. 2001; Kolter and Sandhoff 2005). This review limits its scope primarily to the activator function of the sphingolipid activator proteins but these proteins have other functions, such as lipid-binding and lipid-transfer proteins.


Gauche Disease Roche Molecular Biochemical Metachromatic Leukodystrophy Purkinje Cell Degeneration Globoid Cell Leukodystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Kolter T, Sandhoff K (2005) Principal of lysosomal membrane digestion-stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21:81–103PubMedCrossRefGoogle Scholar
  2. Kolter T, Winau F, Schaible UE, Leippe M, Sandhoff K (2005) Lipid-binding proteins in membrane digestion, antigen presentation, and antimicrobial defense. J Biol Chem 280:41125–41128PubMedCrossRefGoogle Scholar
  3. Matsuda J, Vanier MT, Saito Y, Tohyama J, Suzuki K, Suzuki K (2001) A mutation in the saposin A domain of the sphingolipid activator protein (prosaposin) gene results in a late-onset, chronic form of globoid cell leukodystrophy in the mouse. Hum Mol Genet 10:1191–1199PubMedCrossRefGoogle Scholar
  4. Matsuda J, Kido M, Tadano-Aritomi K, Ishizuka I, Tominaga K, Toida K, Takeda E, Suzuki K, Kuroda Y (2004) Mutation in saposin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in the mouse. Hum Mol Genet 13:2709–2723PubMedCrossRefGoogle Scholar
  5. Sandhoff K, Kolter T, Harzer K (2001) Sphingolipid activator proteins. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Vogelstein B (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3371–3388Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Junko Matsuda
    • 1
  1. 1.Institute of Glycotechnology, Future Science and Technology Joint Research CenterTokai UniversityHiratsuka, KanagawaJapan

Personalised recommendations