Convenient Synthesis of Glycan-Related Oligosaccharides and Their Transformation into Neoglycoconjugates Using Enzymatic Methods

  • Takeomi Murata
  • Taichi Usui


Glycan-related oligosaccharides involved in a number of biological events. However, there is a paucity of structurally defined oligosaccharides that have been isolated from biological material. Currently, there is a great interest in developing synthetic routes for the oligosaccharide portion of glycoconjugates. The development of simple and effective methods for synthesizing neoglycoconjugates as mimetics of glycoproteins and glycolipids is also essential for the understanding of the biological function of these molecules. Here, we review the recent developments in the synthesis of glycan-related oligosaccharides and neoglycoconjugates.


Transglycosylation Reaction Chemoenzymatic Synthesis Human Milk Oligosaccharide Polyglutamic Acid Oligosaccharide Portion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Harada Y, Murata T, Totani K, Kajimoto T, Masum S-D, Tamba Y, Yamazaki M, Usui T (2005) Design and facile synthesis of neoglycolipids as lactosylceramide and transformation into glycoliposome. Biosci Biotech Biochem 66:801–807Google Scholar
  2. Murata T, Itho T, Usui T (1998) Enzymatic synthesis of β-D-Gal-(1–3)-[β-D-GlcNAc-(1–6)]-α-DGalNAc-OC6H4NO2-p as a carbohydrate unit of mucin-type 2 core. Glycoconjugate J 15:575–5CrossRefGoogle Scholar
  3. Murata T, Inukai T, Suzuki M, Yamagishi M, Usui T (1999) Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Glycoconjugate J 16:189–195CrossRefGoogle Scholar
  4. Murata T, Hattori T, Amarume S, Koichi A, Usui T (2003) Kinetic studies on endo-β-galactosidase by a novel colorimetric assay and synthesis of N-acetyllactosamine-repeating oligosaccharide β-glycosides using its transglycosylation activity. Eur J Biochem 270:1–1CrossRefGoogle Scholar
  5. Ogata M, Murata T, Murakami K, Suzuki T, Hidari KI, Suzuki Y, Uusi T (2007) Chemoenzymatic synthesis of artificial glycopolypeptides containing multivalent sialyloligosaccharides with a γ-polyglutamic acid backbone and their effect for inhibition of infection by influenza viruses. Bioorg Med Chem 15:1383–1393PubMedCrossRefGoogle Scholar
  6. Totani K, Kubota T, Kuroda T, Murata T, Hidari I-PJK, Suzuki T, Suzuki Y, Kobayashi K, Ashida H, Yamamoto K, Usui T (2003) Chemoenzymatic synthesis and application of glycopolymers containing multivalent sialyloligosaccharides with a poly(L-glutamic acid) backbone for inhibition of infection by influenza viruses. Glycobiology 13:1–12CrossRefGoogle Scholar
  7. Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA, Sakai-Tgawa Y, Muramoto Y, Ito M, Kiso M, Horimoto T, Shinya K, Sawada T, Kiso M, Usui T, Murata T, Lin Y, Haire LF, Stevens DJ, Russell RJ, Gambin ST, Skehel JJ, and Kawaoka Y (2006) Hemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptor. Nature 444:378–382PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Takeomi Murata
    • 1
  • Taichi Usui
    • 1
  1. 1.Department of Applied Biological Chemistry, Faculty of AgricultureShizuoka UniversityShizuokaJapan

Personalised recommendations