Locomotion-related Femoral Trabecular Architectures in Primates — High Resolution Computed Tomographies and Their Implications for Estimations of Locomotor Preferences of Fossil Primates

  • Heike Scherf


Bones and teeth are often the only preserved items of extinct animals. Soft tissue remnants, stomach contents or tracks are only preserved under specific embedding and fossilization conditions. As palaeontology seeks to understand how extinct creatures appeared and existed, fossil bone provides the best source of information for reconstructions of fossil species. Additional information about the ecology of extinct animals may be gained from the embedding sediment and associated plant fossils. Since the beginning of palaeontology, the form and locomotor features of extinct animals were inferred from the external characteristics and proportions of their bones. For locomotor studies, their bone surface morphologies and proportions were compared with those of extant animals, with special attention to locomotor relevant features. This kind of comparative analyses may encounter difficulties if the fossil species practiced a unique locomotor pattern which can not be compared with locomotor patterns in extant forms (Day 1979).


Femoral Head Trabecular Bone Cancellous Bone Hind Limb High Resolution Compute Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler C-P (1998) Knochenkrankheiten. Springer-Verlag, BerlinGoogle Scholar
  2. Andrews P, Harrison T, Delson E, Bernor RL, Martin L (1996) Distribution and biochronology of european and southwest asian Miocene catarrhines, In: Bernor RL, Fahlbusch V, Mittmann H-W (eds) The evolution of western eurasian neogene mammal faunas. Columbia University Press, New York, pp 168–207Google Scholar
  3. Begun DR (1992) Phyletic diversity and locomotion in primitive european hominids. Am J Phys Anthropol 87:311–340PubMedCrossRefGoogle Scholar
  4. Biewener AA (1989) Scaling body support in mammals: Limb posture and muscle mechanies. Science 245:45–48PubMedCrossRefGoogle Scholar
  5. Borah B, Gross GJ, Dufresne TE, Smith TS, Cockman MD, Chmielewski PA, Lundy MW, Hartke JJ, Sod EW (2001) Three-dimensional microimaging (Mrul and μCT); finite element modeling, and rapid, prototyping provide unique insight into bone architecture in osteoporosis. Anat Rec (Part B, New Anat) 265:101–110CrossRefGoogle Scholar
  6. Borland R (1991) Menschen und Tiere—Bei den Pavianen. ORFGoogle Scholar
  7. Carpenter CR (1934) A field study of the behaviour and social relations of howling monkeys (Alouatra palliata). Comparative Psychology Monographs X. The John Hopkins Press, Baltimore, MDGoogle Scholar
  8. Carpenter CR (1940) A field study in Siam of the behavior and social relations of the gibbon (Hylobates lar), Reprinted in Naturalistic behavior of non-human primates (Carpenter CR, 1964). The Pennsylvania State University Press, University Park, ILGoogle Scholar
  9. Chambers TJ, Evans M, Gardner TN, Turner-Smith A, Chow JWM (1993) Induction of bone formation in rat tail vertebrae by mechanical loading. Bone Miner 20:167–178PubMedCrossRefGoogle Scholar
  10. Collet J-Y, Vienne G (1986–1989a) Die Affen—Neuweltaffen in Südamerika. Bayrischer Rundfunk 1990Google Scholar
  11. Collet J-Y, Vienne G (1986–1989b) Die Affen—Paviane und Mantelaffen in Afrika. Bayrischer Rundfunk 1990Google Scholar
  12. Compston JE (1994) Connectivity of cancellous bone: assessment and mechanical implications. Bone 15:463–466PubMedCrossRefGoogle Scholar
  13. Dempster DW (1992). Bone remodeling. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven Press, New York, pp 355–380Google Scholar
  14. Daxner-Höck G (1998) Säugetiere (Mammalia) aus dem Karpat des Korneuburger Beckens—3. Rodentia und Carnicora. Beiträge Paläontol 23:367–407Google Scholar
  15. Day MH (1979) The locomotor interpretation of fossil primate postcranial bones, In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behaviour, and morphology: dynamic interactions in primates. Fischer, New York, pp 245–258Google Scholar
  16. Duda GN (1996) Influence of muscle forces on the internal loads in the femur during gait. PhD thesis. Technical University Hamburg-Harburg. Shaker Verlag, AachenGoogle Scholar
  17. Fajardo RJ, Müller R (2001) Three-dimensional analysis of nonhuman primate trabecular architecture using micro-computed tomography. Am J Phys Anthropol 115:327–336PubMedCrossRefGoogle Scholar
  18. Fischer J (1961) Vergleichend-anatomische Untersuchungen über die Hüft-und Oberschenkelmuskulatur von Papio leucophaeus (CUVIER 1807) und Mensch. PhD thesis, Medical Academy DüsseldorfGoogle Scholar
  19. Fleagle JG (1976) Locomotion and posture of the malayan Siamang and implications for hominoid evolution. Folia Primatol 26:245–269PubMedCrossRefGoogle Scholar
  20. Fleagle JG (1980) Locomotion and posture. In: Chivers DJ (ed.) Malayan forest primates. Plenum Press, New York, pp 191–207Google Scholar
  21. Fleagle JG (1983). Locomotor adaptations of Oligocene and Miocene hominoids and their phyletic implications. In: Ciochon RL, Corruccini RS (eds) New interpretations of ape and human ancestry. Plenum Press, New York, pp 301–324Google Scholar
  22. Franzen JL, Fejfar O, Storch G (2003) First micromammals (mammalia, Soricomorpha) from the Vallesian (Miocene) of Eppelsheim, Rheinhessen (Germany). Senek leth 83:95–102Google Scholar
  23. Frost HM, Ferretti JL, Jee WSS (1998) Perspectives: some roles of mechanical usage, muscle strength, and the mechanostat in skeletal physiology, disease, and research. Calcif Tissue Int 62:1–7PubMedCrossRefGoogle Scholar
  24. Goldstein SA, Matthews LS, Kuhn JL, Hollister SJ (1991) Trabecular bone remodeling: an experimental model. J Biomech 24:135–150PubMedCrossRefGoogle Scholar
  25. Goodship AE, Lanyon LE, McFie H (1979) Functional adaptation of bone to increased stress. J Bone Joint Surg [Am] 61:539–546Google Scholar
  26. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The Relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389PubMedCrossRefGoogle Scholar
  27. Grand TI (1968a) Functional anatomy of the upper limb. Bibl primatol 7:104–125Google Scholar
  28. Grand TI (1968b) The functional anatomy of the lower limb of the Howler Monkey (Alouatta caraya), Am J Phys Anthropol 28:163–182PubMedCrossRefGoogle Scholar
  29. Guldberg RE, Hollister SJ (1995) Influence of loafing on the tissue modulus of trabecular bone: a combined experimental and microstructural modeling approach. Adv Bioeng ASME BED-31:157–158Google Scholar
  30. Guldberg RE, Caldwell NJ, Guo XE, Goulet RW, Hollister SJ, Goldstein SA (1997a) Mechanical stimulation of tissue repair in the hydraulic bone chamber. J Bone Miner Res 12:1295–1302PubMedCrossRefGoogle Scholar
  31. Guldberg RE, Richards M, Caldwell NJ, Kuelske CL, Goldstein SA (1997b) Trabecular bone adaptation to variations in porous-coated implant topology. J Biomech 30:147–153PubMedCrossRefGoogle Scholar
  32. Günther MM (1989) Funktionsmorphologische Untersuchungen zum Sprungverhalten an mehreren Halbaffenarten. PhD thesis. Free University of BerlinGoogle Scholar
  33. Hall KRL (1962) Numerical data, maintenance activities and locomotion of the wild Chamea Baboon, Papio ursinus. Proc Zool Soc Lond 139:181–220Google Scholar
  34. Huiskes R (1997). Simulation of self-organization and functional adaptation in bone. In: Schneider E (ed.) Biomechanik des menschlichen Bewegungsapparates (Der Unfallchirurg/Hefte 261), Springer-Verlag, Berlin, pp 299–320Google Scholar
  35. Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706PubMedCrossRefGoogle Scholar
  36. Krieg H (1928) Schwarze Brüllaffen (Alouatta caraya Humboldt). Tagebuch-Aufzeichnungen auf der Deutschen Chaco-Expedition. Z Saeuget II:119–132Google Scholar
  37. Kummer B (1959) Bauprinzipien des Säugerskeletts. Georg Thieme Verlag, StuttgartGoogle Scholar
  38. Langdon JH (1986) Functional morphology of the Miocene hominoid foot. Contrib Primatol 22:1–225Google Scholar
  39. Lanyon LE (1974) Experimantal support for the trajectorial theory of bone structure. J Bone Joint Surg [Br] 56:160–166Google Scholar
  40. Lanyon LE (1981) Locomotor loading and functional adaptation in limb bones. Symp Zool Soc Lond 48:305–329Google Scholar
  41. van der Linden JC, Birkenhäger-Frenkel DH, Verhaar JAN, Weinans H (2001) Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution. J Biomech 34:1573–1580PubMedCrossRefGoogle Scholar
  42. MacLatchy L, Müller R (2002) A comparison of the femoral head and neck trabecular architecture of Galago and Perodictius using micro-computed tomography (μCT). J Hum Evol 43:89–105PubMedCrossRefGoogle Scholar
  43. Martill DM (1991) Bones as stones: the contribution of vertebrate remains to the lithologic record. In: Donovan SK (ed.) The process of fossilization. Belhaven Press, London, pp 270–292Google Scholar
  44. McHenry H, Corruccini RS (1976) Affinities of tertiary hominoid femora. Folia Primatol 26:139–150PubMedCrossRefGoogle Scholar
  45. McNeill Alexander R (1985) Body support, scaling, and allometry. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Belknap Press, Cambridge, MA, pp 26–37Google Scholar
  46. Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569–577PubMedCrossRefGoogle Scholar
  47. Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13:503–512PubMedCrossRefGoogle Scholar
  48. Mullender MG, Huiskes R, Weinans H (1994) A physiological approach to the simulation of bone remodeling as a self-organizational control process. J Biomech 27: 1389–1394PubMedCrossRefGoogle Scholar
  49. Müller R, Van Campenhout H, Van Damme B, Van der Perre G, Dequeker J, Hildebrand T, Rüegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66PubMedCrossRefGoogle Scholar
  50. Napier JR (1976) Primate locomotion. Oxf Biol Readers 41:3–16Google Scholar
  51. Nikolei J (2002) Lokomotionsökologie adulter Hanuman Languren (Semnopithecus entellus) in einem saisonalen Waldhabitat in Ramnagar, Südnepal. PhD thesis, Free University of BerlinGoogle Scholar
  52. Ott SM (1996). Theoretical and methodical approach. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, CA, pp 231–241Google Scholar
  53. Parfitt AM (1983). The physiologic and elinic significance of bone histomorphometric data. In: Recker RR (ed.) Bone histomorphometry: techniques and interpretation. CRC Press, Inc, Boca Raton, FL, pp 143–223Google Scholar
  54. Pauwels F (1965) Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungs apparates. Springer-Verlag, HeidelbergGoogle Scholar
  55. Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer-Verlag, HeidelbergGoogle Scholar
  56. Platzer W, Kahle W, Leonhardt H (1986) Taschenatias der Anatomie. Thieme Verlag, StuttgartGoogle Scholar
  57. Preuschoft H (1988) Kleine Menschenaffen oder Gibbons. In: Grzimek B (ed.) Grzimeks Enzyklopädie der Säugetiere. Vol. 2. Kindler Verlag, München, pp 328–356Google Scholar
  58. Rafferty KL (1998) Structural design of the femoral neck in primates. J Hum Evol 34:361–383PubMedCrossRefGoogle Scholar
  59. van Rietbergen B, Huiskes R, Eckstein F, Rüegsegger P (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18: 1781–1788PubMedCrossRefGoogle Scholar
  60. Rose MD (1994) Quadrupedalism in some Miocene catarrhines. J Hum Evol 26:387–411CrossRefGoogle Scholar
  61. Ryan TM, Ketcham RA (2002a) Femoral head trabecular bone structure in two omomyid primates. J Hum Evol 42:241–263CrossRefGoogle Scholar
  62. Ryan TM, Ketcham RA (2002b) The three-dimensional structure of trabecular bone in the femoral head of strepsirrhine primates. J Hum Evol 43:1–26PubMedCrossRefGoogle Scholar
  63. Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA (1995) Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res 10:1762–1768PubMedGoogle Scholar
  64. Scherf H (2007) Locomotion-related femoral trabecular architectures in Primates (Paidopithex rhenanus, Pliopithecus vindobonensis). PhD thesis, Darmstadt University of Technology.
  65. Scherf H, Koller B, Schrenk F (2005) Locomotion related structures in the femoral trabecular architecture of Primates and Insectivores. Senek biol 85:101–112Google Scholar
  66. Simon M, Sauerwein C, Tisenau I, Burdairon S (2001) Felxible 3D-Computertomographie im RayScan 200. DGZfP-Jahrestagung 2001, Zerstöringsfreie Materialprüfung, Berlin 21.–23. Mayi 2001, 20.08.2006.
  67. Simons EL, Fleagle J (1973) The history of extinct gibbonlike primates. Gibbon and Siamang 2:121–148Google Scholar
  68. Stenström M, Olander B, Letho-Axelius D, Madsen JE, Nordsletten L, Carlsson GA (2000) Bone mineral density and bone structure parameters as predictors of bone strength: as analysis using computerized microtomography and gastrectomy-induced osteopenia in the rat. J Biomech 33:289–297PubMedCrossRefGoogle Scholar
  69. Swindler DR, Wood CD (1973) An atlas of primate gross anatomy. University of Washington Press, SeattleGoogle Scholar
  70. Szalay FS, Delson E (1979) Evolutionary history of the primates. Academic Press, New YorkGoogle Scholar
  71. Tsubota K, Adachi T, Tomita Y (2002) Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. J Biomech 35:1541–1551PubMedCrossRefGoogle Scholar
  72. Vereecke E (2006) The functional morphology and bipedal locomotion of Hylobates lar and its implications for the evolution of hominin bipedalism. PhD thesis, University AntwerpenGoogle Scholar
  73. Vogel C, Winkler P (1988) Schlank-und Stummelaffen. In: Grzimek B (ed.) Grzimeks Enzyklopädie der Säugetiere, Vol. 2. Kindler Verlag, München, pp 296–325Google Scholar
  74. Weaver JK, Chalmers J (1966) Cancellous bone: Its strength and changes with aging and an evaluation of some method for measuring its mineral content. J Bone Joint Surg [AM] 48:289–298Google Scholar
  75. Welker C, Schäfer-Witt C (1988) Kapuzinerartige. In: Grzimek B (ed.) Grzimeks Enzyklopädie der Säugetiere, Vol. 2, Kindler Verlag, München, pp 122–177Google Scholar
  76. Welten DC, Kemper HCG, Post GB, van Mechelen W, Twisk J, Lips P, Teule GJ (1994) Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res 9:1089–1096PubMedCrossRefGoogle Scholar
  77. Whalen RT, Carter DR, Steele CR (1988) Influence of physical activity on the regulation of bone density. J Biomech 21:825–837PubMedCrossRefGoogle Scholar
  78. Whitehouse WJ, Dyson ED (1974) Seanning electron microscope studies of trabecular bone in the proximal end of the human femur. J Anat 118:417–444PubMedGoogle Scholar
  79. Whitehouse WJ, Dyson ED, Jackson CK (1971) The scanning electron microscope in studies of trabecular bone from a human vertebral body. J Anat 108:481–496PubMedGoogle Scholar
  80. Williams JL, Lewis JL (1982) Properties and an anisotropic model of cancelous bone from the proximal tibial epithysis. J Biomech Eng 104:50–56PubMedCrossRefGoogle Scholar
  81. Wolff J (1892) Das Gesetz der Transformation der Knochen. Schattauer, Stuttgart; Reprint 1991, Hirschwald, BerlinGoogle Scholar
  82. Zapfe H (1960) Die Primatenfunde aus der miozänen Spaltenfüllung von Neudorf an der March (Děvínská Nová Ves), Tschechoslowakei. Schweiz Palaeontol Abh 78:1–293Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Heike Scherf
    • 1
  1. 1.Max Planck Institute for Evolutionary AnthropologyLeipzigGermany

Personalised recommendations