Advertisement

The Anatomical Foundation for Multidisciplinary Studies of Animal Limb Function: Examples from Dinosaur and Elephant Limb Imaging Studies

  • John R. Hutchinson
  • Charlotte Miller
  • Guido Fritsch
  • Thomas Hildebrandt

Abstract

What makes so many animals, living and extinct, so popular and distinct is anatomy; it is what leaps out at a viewer first whether they observe a museum’s mounted Tyrannosaurus skeleton or an elephant placidly browsing on the savannah. Anatomy alone can make an animal fascinating — so many animals are so physically unlike human observers, yet what do these anatomical differences mean for the lives of animals?

Keywords

Asian Elephant African Elephant Extant Bird Ornithischian Dinosaur Phalangeal Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander R McN (1989) Dynamics of dinosaurs and other extinct giants. Columbia University Press, New YorkGoogle Scholar
  2. Alexander R McN, Ker RF (1990) The architecture of leg muscles. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems. Springer-Verlag, New York, pp 568–577Google Scholar
  3. Alexander R McN, Jayes AS, Maloiy GMO, Wathuta EM (1981) Allometry of the leg muscles of mammals. J Zool 194:539–552Google Scholar
  4. Alexander R McN, Maloiy GMO, Hunter B, Jayes AS, Nturibi J (1979) Mechanical stresses in fast locomotion of buffalo (Syncerus caffer) and elephant (Loxodonta africana), J Zool 189:135–144.Google Scholar
  5. An KN, Takahashi K, Harrigan TP, Chao EY (1984) Determination of muscle orientations and moment arms. J Biomech Eng 106:280–283PubMedCrossRefGoogle Scholar
  6. Biewener AA (1989) Sealing body support in mammals: limb posture and muscle mechanics. Science 245:45–48PubMedCrossRefGoogle Scholar
  7. Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 250:1097–1103PubMedCrossRefGoogle Scholar
  8. Blair P (1710) Osteographica elephantina. Phil Trans Roy Soc Lond 27:51–168Google Scholar
  9. Carrano MT (1998) Locomotion in non-avian dinosaurs: integrating data from hindlimb kinematics, in vivo strains, and bone morphology. Paleobiology 24:450–469lGoogle Scholar
  10. Carrano MT, Hutchinson JR (2002) Pelvie and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda). J Morph 252:207–228.CrossRefGoogle Scholar
  11. Charig A (1972) The evolution of the archosaur pelvis and hindlimb: an explanation in functional terms. In: Joysey KA, Kemp TS (eds) Studies in vertebrate evolution. Oliver & Boyd, Edinburgh, UK, pp 121–155Google Scholar
  12. Coombs WP (1978) Theoretical aspects of cursorial adaptations in dinosaurs. Q Rev Biol 53:393–415CrossRefGoogle Scholar
  13. Csuti BA, Sargent EL, Bechert US (eds) (2001) The elephant’s foot: care and prevention of foot conditions in captive Asian and African elephants. Iowa State Press, AmesGoogle Scholar
  14. Delp SL, Hess WE, Hungerford DS, Jones LC (1999) Variation of rotation moment arms with hip flexion. J Biomech 32:493–501PubMedCrossRefGoogle Scholar
  15. Eales NB (1928) The anatomy of a foetal African Elephant, Elephas africanus (Loxodonta africana), Part II. The body muscles. Trans Roy Soc Edinburgh 55:609–642Google Scholar
  16. Eales NB (1929) The anatomy of a foetal African Elephant, Elephas africanus (Loxodonta africana), Part III. The contents of the thorax and abdomen, and the skeleton. Trans Roy Soc Edinburgh 56:203–246Google Scholar
  17. Farlow JO, Gatesy SM, Holtz TR Jr, Hutchinson JR, Robinson JM (2000) Theropod locomotion. Am Zool 40:640–663CrossRefGoogle Scholar
  18. Gambaryan PP (1974) How mammals run. John Wiley & Sons, New YorkGoogle Scholar
  19. Gatesy SM (1990) Caudofemoral musculature and the evolution of theropod locomotion. Paleobiol 16:170–186Google Scholar
  20. Gauthier JA (1986) Saurischian monophyly and the origin of birds. In: Padian K (ed.) The origin of birds and the evolution of flight. Mem Calif Acad Sci 8:1–55Google Scholar
  21. Hutchinson JR (2001a) The evolution of pelvic osteology and soft tissues on the line to extant birds (Neornithes). Zool J Linn Soc 131:123–168CrossRefGoogle Scholar
  22. Hutchinson JR (2001b) The evolution of femoral osteology and soft tissues on the line to extant birds (Neornithes), Zool J Linn Soc 131:169–197CrossRefGoogle Scholar
  23. Hutchinson JR (2002) The evolution of hindlimb tendons and museles on the line to crown-group birds. Comp Biochem Physiol A 133:1051–1086CrossRefGoogle Scholar
  24. Hutchinson JR (2004a) Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa, J Morph 262:421–440PubMedCrossRefGoogle Scholar
  25. Hutchinson JR (2004b) Biomechanical modeling and sensivity analysis of bipedal running ability. II. Extinct taxa. J Morph 262:441–461PubMedCrossRefGoogle Scholar
  26. Hutchinson JR, Garcia M (2002) Tyrannosaurus was not a fast runner. Nature 415:1018–1021PubMedCrossRefGoogle Scholar
  27. Hutchinson JR, Gatesy SM (2000) Adductors, abductors, and the evolution of archosaur locomotion. Paleobiology 26:734–751CrossRefGoogle Scholar
  28. Hutchinson JR, Famini D, Lair R, Kram R (2003) Biomechanics: are fast-moving elephants really running? Nature 422:493–494PubMedCrossRefGoogle Scholar
  29. Hutchinson JR, Anderson FC, Blemker S, Delp SL (2005) Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model. Paleobiology 31:676–701Google Scholar
  30. Hutchinson JR, Schwerda D, Famini D, Dale RHI, Fischer M, Kram R (2006) The locomotor kinematics of African and Asian elephants: changes with speed and size. J Exp Biol 209:3812–3827PubMedCrossRefGoogle Scholar
  31. Jacob F (1977) Evolution and tinkering. Science 196: 1161–1196PubMedCrossRefGoogle Scholar
  32. Koehl MAR (1996) When does morphology matter? Ann Rev Ecol Syst 27:501–542CrossRefGoogle Scholar
  33. Lauder GV (1995) On the inference of function from structure. In: Thomason JJ (ed.) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 1–18Google Scholar
  34. Mariappa D (1986) Anatomy and histology of the Indian elephant. Indira Publishing House, Oak Park, MIGoogle Scholar
  35. Neuville H (1935) Sur quelques caractères anatomiques du pied des éléphants. Arch Mus Nat ďHist Natur Paris 6e Série 13:111–183Google Scholar
  36. Paul GS (1998) Limb design, function and running performance in ostrich-mimics and tyrannosaurs. Gaia 15:257–270Google Scholar
  37. Payne RC, Veenman P, Wilson AM (2004) The role of the extrinsic thoracic limb muscles in equine locomotion. J Anat 206:193–204CrossRefGoogle Scholar
  38. Payne RC, Hutchinson JR, Robilliard JJ, Smith NC, Wilson AM (2005) Functional specialization of pelvic limb anatomy in horses (Equus caballus). J Anat 206:557–574PubMedCrossRefGoogle Scholar
  39. Perle A (1985) Comparative myology of the pelvic-femoral region in the bipedal dinosaurs. Paleontol J 19:105–109Google Scholar
  40. Ramsay EC, Henry RW (2001) Anatomy of the elephant foot. In: Csuti BA, Sargent EL, Bechert US (eds) (2001) The Elephant’s Foot: Care and Prevention of Foot Conditions in Captive Asian and African Elephants. Ames: Iowa State Press, pp 9–12.Google Scholar
  41. Romer AS (1927) The pelvic musculature of ornithischian dinosaurs. Acta Zoologica 8:225–275CrossRefGoogle Scholar
  42. Roth VL (1984) How elephants grow: heterochrony and the calibration of developmental stages in some living and fossil species. J Vert Paleont 4:126–145Google Scholar
  43. Sereno PC (1999) The evolution of dinosaurs. Science 284:2137–2147PubMedCrossRefGoogle Scholar
  44. Shoshani J (1998) Understanding proboseidean evolution: a formidable task. Trends Ecol Evol 13:480–487CrossRefGoogle Scholar
  45. Shoshani J, Tassy P (eds) (1996) The Proboscidea: evolution and palaeoecology of elephants and their relatives. Oxford University Press, OxfordGoogle Scholar
  46. Sikes SK (1971) The natural history of the African elephant, Weidenfeld and Nicolson, LondonGoogle Scholar
  47. Smuts MMS, Bezuidenhout AJ (1993) Osteology of the thoracic limb of the African elephant (Loxodonta africana). Onterstepoort J Vet Res 60:1–14Google Scholar
  48. Smuts MMS, Bezuidenhout AJ (1994) Osteology of the pelvic limb of the African elephant (Loxodonta africana), Onterstepoort J Vet Res 61:51–66Google Scholar
  49. Thomas MG, Hagelberg E, Jones HB, Yang Z, Lister AM (2000) Molecular and morphological evidence on the phylogeny of the Elephantidae. Proc Roy Soc Lond B 267:2493–2500CrossRefGoogle Scholar
  50. Walker AD (1977) Evolution of the pelvis in birds and dinosaurs. In: Andrews SM, Miles RS, Walker AD (eds) Problems in vertebrate evolution, Linn Soc Symp Ser 4. Academic Press, London, pp 319–358Google Scholar
  51. Weissengruber GE, Egger GF, Hutchinson JR, Groenewald HB, Elsässer L, Famini D, Forstenpointner G (2006) The structure of the cushions in the feet of African Elephants (Loxodonta africana). J Anat 209:781–792PubMedCrossRefGoogle Scholar
  52. Witmer LM (1995) The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ (ed.) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 19–33Google Scholar
  53. Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X (2003) Four-winged dinosaurs from China. Nature 6921:335–340CrossRefGoogle Scholar
  54. Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • John R. Hutchinson
    • 1
  • Charlotte Miller
    • 1
  • Guido Fritsch
    • 2
  • Thomas Hildebrandt
    • 2
  1. 1.Structure and Motion Laboratory, Department of Veterinary Basic Sciences, The Royal Veterinary CollegeUniversity of LondonHatfieldUK
  2. 2.Leibniz Institute for Zoo and Wildlife Research (IZW)BerlinGermany

Personalised recommendations