Skip to main content

Protein Kinase A-Independent Mechanism of cAMP in Insulin Secretion

  • Chapter
Book cover Pancreatic Beta Cell in Health and Disease

Abstract

Although an increase in the intracellular calcium concentration is the primary signal in the regulation of insulin secretion, other intracellular signals are also important, adenosine 3′,5′-cyclic monophosphate (cAMP) being especially critical. cAMP is well known to potentiate glucose-induced insulin secretion. Until recently, the action of cAMP on insulin secretion was generally thought to be mediated exclusively by the activation of protein kinase A (PKA), which phosphorylates proteins associated with the secretory processes. However, accumulating evidence indicates that the cAMP-binding protein, cAMP-regulated guanine nucleotide exchange factor (cAMP-GEF)/exchange proteins activated directly by cyclic AMP (Epac), participates in a novel, PKA-independent mechanism of cAMP action in insulin secretion. cAMP compartmentation in pancreatic beta cells has been proposed to account for these distinct effects of cAMP signaling in insulin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prentki M, Matschinsky FM (1987) Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67:1185–1248

    PubMed  CAS  Google Scholar 

  2. Malaisse WJ, Malaisse-Lagae F (1984) The role of cyclic AMP in insulin release. Experientia 40:1068–1074

    Article  PubMed  CAS  Google Scholar 

  3. Sutherland EW, Robison GA (1969) The role of cyclic AMP in the control of carbohydrate metabolism. Diabetes 18:797–819

    PubMed  CAS  Google Scholar 

  4. Henquin JC (1985) The interplay between cyclic AMP and ions in the stimulus-secretion coupling in pancreatic B-cells. Arch Int Physiol Biochim 93:37–48

    Article  PubMed  CAS  Google Scholar 

  5. Charles MA, Fanska R, Schmid FG, Forsham PH, Grodsky GM (1973) Adenosine 3′,5′-monophosphate in pancreatic islets: glucose-induced insulin release. Science 179: 569–571

    Article  PubMed  CAS  Google Scholar 

  6. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y (1964) Plasma Insulin Response to Oral and Intravenous Glucose Administration. J Clin Endocrinol Metab 24:1076–1082

    PubMed  CAS  Google Scholar 

  7. Drucker DJ (2001) Minireview: the glucagon-like peptides. Endocrinology 142: 521–527

    Article  PubMed  CAS  Google Scholar 

  8. Meier JJ, Nauck MA, Schmidt WE, Gallwitz B (2002) Gastric inhibitory polypeptide: the neglected incretin revisited. Regul Pept 107:1–13

    Article  PubMed  CAS  Google Scholar 

  9. Jones PM, Persaud SJ (1998) Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic beta cells. Endocr Rev 19:429–461

    Article  PubMed  CAS  Google Scholar 

  10. Seino S, Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85:1303–1342

    Article  PubMed  CAS  Google Scholar 

  11. Pyne NJ, Furman BL (2003) Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia 46:1179–1189

    Article  PubMed  CAS  Google Scholar 

  12. Katada T, Ui M (1979) Islet-activating protein. Enhanced insulin secretion and cyclic AMP accumulation in pancreatic islets due to activation of native calcium ionophores. J Biol Chem 254:469–479

    PubMed  CAS  Google Scholar 

  13. Doyle ME, Egan JM (2003) Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev 55:105–131

    Article  PubMed  CAS  Google Scholar 

  14. Wiedenkeller DE, Sharp GW (1983) Effects of forskolin on insulin release and cyclic AMP content in rat pancreatic islets. Endocrinology 113:2311–2313

    Article  PubMed  CAS  Google Scholar 

  15. Howell SL, Jones PM, Persaud SJ (1994) Regulation of insulin secretion: the role of second messengers. Diabetologia 37 2:S30–S35

    Article  Google Scholar 

  16. Gromada J, Ding WG, Barg S, Renstrom E, Rorsman P (1997) Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Arch 434:515–524

    Article  PubMed  CAS  Google Scholar 

  17. Renstrom E, Eliasson L, Rorsman P (1997) Protein kinase A-dependent and-independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 502:105–118

    Article  PubMed  CAS  Google Scholar 

  18. Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811

    Article  PubMed  CAS  Google Scholar 

  19. de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477

    Article  PubMed  CAS  Google Scholar 

  20. Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279

    Article  PubMed  CAS  Google Scholar 

  21. Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S (2004) Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis. J Biol Chem 279:7956–7961

    Article  PubMed  CAS  Google Scholar 

  22. Kang G, Chepurny OG, Malester B, Rindler MJ, Rehmann H, Bos JL, Schwede F, Coetzee WA, Holz GG (2006) cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells. J Physiol 573:595–609

    Article  PubMed  CAS  Google Scholar 

  23. Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, Schwede F, Genieser HG, Holz GG (2003) Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic β-cells. J Biol Chem 278:8279–8285

    Article  PubMed  CAS  Google Scholar 

  24. Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S (2001) Critical role of cAMP-GEFII-Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276:46046–46053

    Article  PubMed  CAS  Google Scholar 

  25. Eliasson L, Ma X, Renstrom E, Barg S, Berggren PO, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P (2003) SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 121:181–197

    Article  PubMed  CAS  Google Scholar 

  26. Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T, Seino S (2002) Piccolo, a Ca2+ sensor in pancreatic beta cells. Involvement of cAMP-GEFII Rim2 Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 277:50497–50502

    Article  PubMed  CAS  Google Scholar 

  27. de Rooij J, Rehmann H, van Triest M, Cool RH, Wittinghofer A, Bos JL (2000) Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 275:20829–20836

    Article  PubMed  Google Scholar 

  28. Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31: 680–686

    Article  PubMed  CAS  Google Scholar 

  29. Ueno H, Shibasaki T, Iwanaga T, Takahashi K, Yokoyama Y, Liu LM, Yokoi N, Ozaki N, Matsukura S, Yano H, Seino S (2001) Characterization of the gene EPAC2: structure, chromosomal localization, tissue expression, and identification of the liver-specific isoform. Genomics 78:91–98

    Article  PubMed  CAS  Google Scholar 

  30. Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598

    Article  PubMed  CAS  Google Scholar 

  31. Gundelfinger ED, Kessels MM, Qualmann B (2003) Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4:127–139

    Article  PubMed  CAS  Google Scholar 

  32. Yarwood SJ (2005) Microtubule-associated proteins (MAPs) regulate cAMP signalling through exchange protein directly activated by cAMP (EPAC). Biochem Soc Trans 33:1327–1329

    Article  PubMed  CAS  Google Scholar 

  33. Li Y, Asuri S, Rebhun JF, Castro AF, Paranavitana NC, Quilliam LA (2006) The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J Biol Chem 281:2506–2514

    Article  PubMed  CAS  Google Scholar 

  34. Caron E (2003) Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci 116:435–440

    Article  PubMed  CAS  Google Scholar 

  35. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81: 153–208

    PubMed  CAS  Google Scholar 

  36. Ringheim GE, Taylor SS (1990) Effects of cAMP-binding site mutations on intradomain cross-communication in the regulatory subunit of cAMP-dependent protein kinase I. J Biol Chem 265:19472–19478

    PubMed  CAS  Google Scholar 

  37. Kuno T, Shuntoh H, Sakaue M, Saijoh K, Takeda T, Fukuda K, Tanaka C (1988) Site-directed mutagenesis of the cAMP-binding sites of the recombinant type I regulatory subunit of cAMP-dependent protein kinase. Biochem Biophys Res Commun 153: 1244–1250

    Article  PubMed  CAS  Google Scholar 

  38. Rehmann H, Prakash B, Wolf E, Rueppel A, De Rooij J, Bos JL, Wittinghofer A (2003) Structure and regulation of the cAMP-binding domains of Epac2. Nat Struct Biol 10:26–32

    Article  PubMed  CAS  Google Scholar 

  39. Rehmann H, Rueppel A, Bos JL, Wittinghofer A (2003) Communication between the regulatory and the catalytic region of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem 278:23508–23514

    Article  PubMed  CAS  Google Scholar 

  40. Rehmann H, Schwede F, Doskeland SO, Wittinghofer A, Bos JL (2003) Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem 278:38548–38556

    Article  PubMed  CAS  Google Scholar 

  41. Bos JL (2003) Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4:733–738

    Article  PubMed  CAS  Google Scholar 

  42. Su Y, Dostmann WR, Herberg FW, Durick K, Xuong NH, Ten Eyck L, Taylor SS, Varughese KI (1995) Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 269:807–813

    Article  PubMed  CAS  Google Scholar 

  43. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    PubMed  CAS  Google Scholar 

  44. Christensen AE, Selheim F, de Rooij J, Dremier S, Schwede F, Dao KK, Martinez A, Maenhaut C, Bos JL, Genieser HG, Doskeland SO (2003) cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem 278:35394–35402

    Article  PubMed  CAS  Google Scholar 

  45. Schwede F, Maronde E, Genieser H, Jastorff B (2000) Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 87:199–226

    Article  PubMed  CAS  Google Scholar 

  46. Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, Genieser HG, Doskeland SO, Blank JL, Bos JL (2002) A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 4:901–906

    Article  PubMed  CAS  Google Scholar 

  47. Kaneko M, Takahashi T (2004) Presynaptic mechanism underlying cAMP-dependent synaptic potentiation. J Neurosci 24:5202–5208

    Article  PubMed  CAS  Google Scholar 

  48. Somekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y, Mochizuki N (2005) Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res 97: 655–662

    Article  PubMed  CAS  Google Scholar 

  49. Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, Jakobs KH (2001) A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 3:1020–1024

    Article  PubMed  CAS  Google Scholar 

  50. Shibasaki T, Sunaga Y, Seino S (2004) Integration of ATP, cAMP, and Ca2+ signals in insulin granule exocytosis. Diabetes 533:S59–S62

    Article  PubMed  CAS  Google Scholar 

  51. Rehmann H, Das J, Knipscheer P, Wittinghofer A, Bos JL (2006) Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439:625–628

    Article  PubMed  CAS  Google Scholar 

  52. Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, Bryan J (2002) cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes 51:3440–3449

    Article  PubMed  CAS  Google Scholar 

  53. Shiota C, Larsson O, Shelton KD, Shiota M, Efanov AM, Hoy M, Lindner J, Kooptiwut S, Juntti-Berggren L, Gromada J, Berggren PO, Magnuson MA (2002) Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem 277: 37176–37183

    Article  PubMed  CAS  Google Scholar 

  54. Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, Thevenod F, Renstrom E (2001) Priming of insulin granules for exocytosis by granular Cl- uptake and acidification. J Cell Sci 114:2145–2154

    PubMed  CAS  Google Scholar 

  55. Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff BS, Rorsman P (1995) Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting βTC3-cells by enhancement of intracellular calcium mobilization. Diabetes 44: 767–774

    Article  PubMed  CAS  Google Scholar 

  56. Bootman MD, Missiaen L, Parys JB, De Smedt H, Casteels R (1995) Control of inositol 1,4,5-trisphosphate-induced Ca2+ release by cytosolic Ca2+. Biochem J 306: 445–451

    PubMed  CAS  Google Scholar 

  57. Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Exp Biol 200:315–319

    PubMed  CAS  Google Scholar 

  58. Kang G, Chepurny OG, Holz GG (2001) cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta cells. J Physiol 536:375–385

    Article  PubMed  CAS  Google Scholar 

  59. Bode HP, Moormann B, Dabew R, Goke B (1999) Glucagon-like peptide 1 elevates cytosolic calcium in pancreatic beta cells independently of protein kinase A. Endocrinology 140:3919–3927

    Article  PubMed  CAS  Google Scholar 

  60. Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW, Holz GG (2005) A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells. J Physiol 566:173–188

    Article  PubMed  CAS  Google Scholar 

  61. Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG (2006) Cell physiology of cAMP sensor Epac. J Physiol 577:5–15

    Article  PubMed  CAS  Google Scholar 

  62. Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828

    Article  PubMed  CAS  Google Scholar 

  63. Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84:137–167

    Article  PubMed  CAS  Google Scholar 

  64. Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773

    Article  PubMed  CAS  Google Scholar 

  65. Brunton LL, Hayes JS, Mayer SE (1981) Functional compartmentation of cyclic AMP and protein kinase in heart. Adv Cyclic Nucleotide Res 14:391–397

    PubMed  CAS  Google Scholar 

  66. Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by β-adrenergic agonists. Proc Natl Acad Sci USA 93:295–299

    Article  PubMed  CAS  Google Scholar 

  67. Jurevicius J, Skeberdis VA, Fischmeister R (2003) Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following β2-adrenergic stimulation of ICa,L in frog ventricular myocytes. J Physiol 551:239–252

    Article  PubMed  CAS  Google Scholar 

  68. Laflamme MA, Becker PL (1999) Gs and adenylyl cyclase in transverse tubules of heart: implications for cAMP-dependent signaling. Am J Physiol 277:H1841–H1848

    PubMed  CAS  Google Scholar 

  69. Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20:1921–1930

    Article  PubMed  CAS  Google Scholar 

  70. Rochais F, Vandecasteele G, Lefebvre F, Lugnier C, Lum H, Mazet JL, Cooper DM, Fischmeister R (2004) Negative feedback exerted by cAMP-dependent protein kinase and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes: an in vivo study using adenovirus-mediated expression of CNG channels. J Biol Chem 279:52095–52105

    Article  PubMed  CAS  Google Scholar 

  71. Ding WG, Gromada J (1997) Protein kinase A-dependent stimulation of exocytosis in mouse pancreatic beta cells by glucose-dependent insulinotropic polypeptide. Diabetes 46:615–621

    Article  PubMed  CAS  Google Scholar 

  72. Rich TC, Fagan KA, Tse TE, Schaack J, Cooper DM, Karpen JW (2001) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci USA 98:13049–13054

    Article  PubMed  CAS  Google Scholar 

  73. Devic E, Xiang Y, Gould D, Kobilka B (2001) β-adrenergic receptor subtype-specific signaling in cardiac myocytes from β1 and β2 adrenoceptor knockout mice. Mol Pharmacol 60:577–583

    PubMed  CAS  Google Scholar 

  74. Shimomura H, Imai A, Nashida T (2004) Evidence for the involvement of cAMP-GEF (Epac) pathway in amylase release from the rat parotid gland. Arch Biochem Biophys 431:124–128

    Article  PubMed  CAS  Google Scholar 

  75. Ma X, Zhang Y, Gromada J, Sewing S, Berggren PO, Buschard K, Salehi A, Vikman J, Rorsman P, Eliasson L (2005) Glucagon stimulates exocytosis in mouse and rat pancreatic α-cells by binding to glucagon receptors. Mol Endocrinol 19:198–212

    Article  PubMed  CAS  Google Scholar 

  76. Sedej S, Rose T, Rupnik M (2005) cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. J Physiol 567:799–813

    Article  PubMed  CAS  Google Scholar 

  77. Zhong N, Zucker RS (2005) cAMP acts on exchange protein activated by cAMP/cAMP-regulated guanine nucleotide exchange protein to regulate transmitter release at the crayfish neuromuscular junction. J Neurosci 25:208–214

    Article  PubMed  CAS  Google Scholar 

  78. Sakaba T, Neher E (2003) Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse. Nature 424:775–778

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Seino, S., Miki, T., Shibasaki, T. (2008). Protein Kinase A-Independent Mechanism of cAMP in Insulin Secretion. In: Seino, S., Bell, G.I. (eds) Pancreatic Beta Cell in Health and Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-75452-7_8

Download citation

Publish with us

Policies and ethics