Protein Kinase A-Independent Mechanism of cAMP in Insulin Secretion

  • Susumu Seino
  • Takashi Miki
  • Tadao Shibasaki


Although an increase in the intracellular calcium concentration is the primary signal in the regulation of insulin secretion, other intracellular signals are also important, adenosine 3′,5′-cyclic monophosphate (cAMP) being especially critical. cAMP is well known to potentiate glucose-induced insulin secretion. Until recently, the action of cAMP on insulin secretion was generally thought to be mediated exclusively by the activation of protein kinase A (PKA), which phosphorylates proteins associated with the secretory processes. However, accumulating evidence indicates that the cAMP-binding protein, cAMP-regulated guanine nucleotide exchange factor (cAMP-GEF)/exchange proteins activated directly by cyclic AMP (Epac), participates in a novel, PKA-independent mechanism of cAMP action in insulin secretion. cAMP compartmentation in pancreatic beta cells has been proposed to account for these distinct effects of cAMP signaling in insulin secretion.


Insulin Secretion Pancreatic Beta Cell Antisense ODNs Insulin Granule Cyclic Nucleotide Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prentki M, Matschinsky FM (1987) Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67:1185–1248PubMedGoogle Scholar
  2. 2.
    Malaisse WJ, Malaisse-Lagae F (1984) The role of cyclic AMP in insulin release. Experientia 40:1068–1074PubMedCrossRefGoogle Scholar
  3. 3.
    Sutherland EW, Robison GA (1969) The role of cyclic AMP in the control of carbohydrate metabolism. Diabetes 18:797–819PubMedGoogle Scholar
  4. 4.
    Henquin JC (1985) The interplay between cyclic AMP and ions in the stimulus-secretion coupling in pancreatic B-cells. Arch Int Physiol Biochim 93:37–48PubMedCrossRefGoogle Scholar
  5. 5.
    Charles MA, Fanska R, Schmid FG, Forsham PH, Grodsky GM (1973) Adenosine 3′,5′-monophosphate in pancreatic islets: glucose-induced insulin release. Science 179: 569–571PubMedCrossRefGoogle Scholar
  6. 6.
    Elrick H, Stimmler L, Hlad CJ Jr, Arai Y (1964) Plasma Insulin Response to Oral and Intravenous Glucose Administration. J Clin Endocrinol Metab 24:1076–1082PubMedGoogle Scholar
  7. 7.
    Drucker DJ (2001) Minireview: the glucagon-like peptides. Endocrinology 142: 521–527PubMedCrossRefGoogle Scholar
  8. 8.
    Meier JJ, Nauck MA, Schmidt WE, Gallwitz B (2002) Gastric inhibitory polypeptide: the neglected incretin revisited. Regul Pept 107:1–13PubMedCrossRefGoogle Scholar
  9. 9.
    Jones PM, Persaud SJ (1998) Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic beta cells. Endocr Rev 19:429–461PubMedCrossRefGoogle Scholar
  10. 10.
    Seino S, Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85:1303–1342PubMedCrossRefGoogle Scholar
  11. 11.
    Pyne NJ, Furman BL (2003) Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia 46:1179–1189PubMedCrossRefGoogle Scholar
  12. 12.
    Katada T, Ui M (1979) Islet-activating protein. Enhanced insulin secretion and cyclic AMP accumulation in pancreatic islets due to activation of native calcium ionophores. J Biol Chem 254:469–479PubMedGoogle Scholar
  13. 13.
    Doyle ME, Egan JM (2003) Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev 55:105–131PubMedCrossRefGoogle Scholar
  14. 14.
    Wiedenkeller DE, Sharp GW (1983) Effects of forskolin on insulin release and cyclic AMP content in rat pancreatic islets. Endocrinology 113:2311–2313PubMedCrossRefGoogle Scholar
  15. 15.
    Howell SL, Jones PM, Persaud SJ (1994) Regulation of insulin secretion: the role of second messengers. Diabetologia 37 2:S30–S35CrossRefGoogle Scholar
  16. 16.
    Gromada J, Ding WG, Barg S, Renstrom E, Rorsman P (1997) Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Arch 434:515–524PubMedCrossRefGoogle Scholar
  17. 17.
    Renstrom E, Eliasson L, Rorsman P (1997) Protein kinase A-dependent and-independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 502:105–118PubMedCrossRefGoogle Scholar
  18. 18.
    Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, Ueno H, Sunaga Y, Yano H, Matsuura Y, Iwanaga T, Takai Y, Seino S (2000) cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2:805–811PubMedCrossRefGoogle Scholar
  19. 19.
    de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477PubMedCrossRefGoogle Scholar
  20. 20.
    Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279PubMedCrossRefGoogle Scholar
  21. 21.
    Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S (2004) Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis. J Biol Chem 279:7956–7961PubMedCrossRefGoogle Scholar
  22. 22.
    Kang G, Chepurny OG, Malester B, Rindler MJ, Rehmann H, Bos JL, Schwede F, Coetzee WA, Holz GG (2006) cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells. J Physiol 573:595–609PubMedCrossRefGoogle Scholar
  23. 23.
    Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, Schwede F, Genieser HG, Holz GG (2003) Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic β-cells. J Biol Chem 278:8279–8285PubMedCrossRefGoogle Scholar
  24. 24.
    Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S (2001) Critical role of cAMP-GEFII-Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276:46046–46053PubMedCrossRefGoogle Scholar
  25. 25.
    Eliasson L, Ma X, Renstrom E, Barg S, Berggren PO, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P (2003) SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 121:181–197PubMedCrossRefGoogle Scholar
  26. 26.
    Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T, Seino S (2002) Piccolo, a Ca2+ sensor in pancreatic beta cells. Involvement of cAMP-GEFII Rim2 Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 277:50497–50502PubMedCrossRefGoogle Scholar
  27. 27.
    de Rooij J, Rehmann H, van Triest M, Cool RH, Wittinghofer A, Bos JL (2000) Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 275:20829–20836PubMedCrossRefGoogle Scholar
  28. 28.
    Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31: 680–686PubMedCrossRefGoogle Scholar
  29. 29.
    Ueno H, Shibasaki T, Iwanaga T, Takahashi K, Yokoyama Y, Liu LM, Yokoi N, Ozaki N, Matsukura S, Yano H, Seino S (2001) Characterization of the gene EPAC2: structure, chromosomal localization, tissue expression, and identification of the liver-specific isoform. Genomics 78:91–98PubMedCrossRefGoogle Scholar
  30. 30.
    Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598PubMedCrossRefGoogle Scholar
  31. 31.
    Gundelfinger ED, Kessels MM, Qualmann B (2003) Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4:127–139PubMedCrossRefGoogle Scholar
  32. 32.
    Yarwood SJ (2005) Microtubule-associated proteins (MAPs) regulate cAMP signalling through exchange protein directly activated by cAMP (EPAC). Biochem Soc Trans 33:1327–1329PubMedCrossRefGoogle Scholar
  33. 33.
    Li Y, Asuri S, Rebhun JF, Castro AF, Paranavitana NC, Quilliam LA (2006) The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J Biol Chem 281:2506–2514PubMedCrossRefGoogle Scholar
  34. 34.
    Caron E (2003) Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci 116:435–440PubMedCrossRefGoogle Scholar
  35. 35.
    Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81: 153–208PubMedGoogle Scholar
  36. 36.
    Ringheim GE, Taylor SS (1990) Effects of cAMP-binding site mutations on intradomain cross-communication in the regulatory subunit of cAMP-dependent protein kinase I. J Biol Chem 265:19472–19478PubMedGoogle Scholar
  37. 37.
    Kuno T, Shuntoh H, Sakaue M, Saijoh K, Takeda T, Fukuda K, Tanaka C (1988) Site-directed mutagenesis of the cAMP-binding sites of the recombinant type I regulatory subunit of cAMP-dependent protein kinase. Biochem Biophys Res Commun 153: 1244–1250PubMedCrossRefGoogle Scholar
  38. 38.
    Rehmann H, Prakash B, Wolf E, Rueppel A, De Rooij J, Bos JL, Wittinghofer A (2003) Structure and regulation of the cAMP-binding domains of Epac2. Nat Struct Biol 10:26–32PubMedCrossRefGoogle Scholar
  39. 39.
    Rehmann H, Rueppel A, Bos JL, Wittinghofer A (2003) Communication between the regulatory and the catalytic region of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem 278:23508–23514PubMedCrossRefGoogle Scholar
  40. 40.
    Rehmann H, Schwede F, Doskeland SO, Wittinghofer A, Bos JL (2003) Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem 278:38548–38556PubMedCrossRefGoogle Scholar
  41. 41.
    Bos JL (2003) Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4:733–738PubMedCrossRefGoogle Scholar
  42. 42.
    Su Y, Dostmann WR, Herberg FW, Durick K, Xuong NH, Ten Eyck L, Taylor SS, Varughese KI (1995) Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 269:807–813PubMedCrossRefGoogle Scholar
  43. 43.
    Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824PubMedGoogle Scholar
  44. 44.
    Christensen AE, Selheim F, de Rooij J, Dremier S, Schwede F, Dao KK, Martinez A, Maenhaut C, Bos JL, Genieser HG, Doskeland SO (2003) cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem 278:35394–35402PubMedCrossRefGoogle Scholar
  45. 45.
    Schwede F, Maronde E, Genieser H, Jastorff B (2000) Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 87:199–226PubMedCrossRefGoogle Scholar
  46. 46.
    Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, Genieser HG, Doskeland SO, Blank JL, Bos JL (2002) A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 4:901–906PubMedCrossRefGoogle Scholar
  47. 47.
    Kaneko M, Takahashi T (2004) Presynaptic mechanism underlying cAMP-dependent synaptic potentiation. J Neurosci 24:5202–5208PubMedCrossRefGoogle Scholar
  48. 48.
    Somekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y, Mochizuki N (2005) Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res 97: 655–662PubMedCrossRefGoogle Scholar
  49. 49.
    Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, Jakobs KH (2001) A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 3:1020–1024PubMedCrossRefGoogle Scholar
  50. 50.
    Shibasaki T, Sunaga Y, Seino S (2004) Integration of ATP, cAMP, and Ca2+ signals in insulin granule exocytosis. Diabetes 533:S59–S62PubMedCrossRefGoogle Scholar
  51. 51.
    Rehmann H, Das J, Knipscheer P, Wittinghofer A, Bos JL (2006) Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439:625–628PubMedCrossRefGoogle Scholar
  52. 52.
    Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, Bryan J (2002) cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes 51:3440–3449PubMedCrossRefGoogle Scholar
  53. 53.
    Shiota C, Larsson O, Shelton KD, Shiota M, Efanov AM, Hoy M, Lindner J, Kooptiwut S, Juntti-Berggren L, Gromada J, Berggren PO, Magnuson MA (2002) Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem 277: 37176–37183PubMedCrossRefGoogle Scholar
  54. 54.
    Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, Thevenod F, Renstrom E (2001) Priming of insulin granules for exocytosis by granular Cl- uptake and acidification. J Cell Sci 114:2145–2154PubMedGoogle Scholar
  55. 55.
    Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff BS, Rorsman P (1995) Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting βTC3-cells by enhancement of intracellular calcium mobilization. Diabetes 44: 767–774PubMedCrossRefGoogle Scholar
  56. 56.
    Bootman MD, Missiaen L, Parys JB, De Smedt H, Casteels R (1995) Control of inositol 1,4,5-trisphosphate-induced Ca2+ release by cytosolic Ca2+. Biochem J 306: 445–451PubMedGoogle Scholar
  57. 57.
    Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Exp Biol 200:315–319PubMedGoogle Scholar
  58. 58.
    Kang G, Chepurny OG, Holz GG (2001) cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta cells. J Physiol 536:375–385PubMedCrossRefGoogle Scholar
  59. 59.
    Bode HP, Moormann B, Dabew R, Goke B (1999) Glucagon-like peptide 1 elevates cytosolic calcium in pancreatic beta cells independently of protein kinase A. Endocrinology 140:3919–3927PubMedCrossRefGoogle Scholar
  60. 60.
    Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH, Harbeck M, Roe MW, Holz GG (2005) A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells. J Physiol 566:173–188PubMedCrossRefGoogle Scholar
  61. 61.
    Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG (2006) Cell physiology of cAMP sensor Epac. J Physiol 577:5–15PubMedCrossRefGoogle Scholar
  62. 62.
    Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828PubMedCrossRefGoogle Scholar
  63. 63.
    Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84:137–167PubMedCrossRefGoogle Scholar
  64. 64.
    Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773PubMedCrossRefGoogle Scholar
  65. 65.
    Brunton LL, Hayes JS, Mayer SE (1981) Functional compartmentation of cyclic AMP and protein kinase in heart. Adv Cyclic Nucleotide Res 14:391–397PubMedGoogle Scholar
  66. 66.
    Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by β-adrenergic agonists. Proc Natl Acad Sci USA 93:295–299PubMedCrossRefGoogle Scholar
  67. 67.
    Jurevicius J, Skeberdis VA, Fischmeister R (2003) Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following β2-adrenergic stimulation of ICa,L in frog ventricular myocytes. J Physiol 551:239–252PubMedCrossRefGoogle Scholar
  68. 68.
    Laflamme MA, Becker PL (1999) Gs and adenylyl cyclase in transverse tubules of heart: implications for cAMP-dependent signaling. Am J Physiol 277:H1841–H1848PubMedGoogle Scholar
  69. 69.
    Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20:1921–1930PubMedCrossRefGoogle Scholar
  70. 70.
    Rochais F, Vandecasteele G, Lefebvre F, Lugnier C, Lum H, Mazet JL, Cooper DM, Fischmeister R (2004) Negative feedback exerted by cAMP-dependent protein kinase and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes: an in vivo study using adenovirus-mediated expression of CNG channels. J Biol Chem 279:52095–52105PubMedCrossRefGoogle Scholar
  71. 71.
    Ding WG, Gromada J (1997) Protein kinase A-dependent stimulation of exocytosis in mouse pancreatic beta cells by glucose-dependent insulinotropic polypeptide. Diabetes 46:615–621PubMedCrossRefGoogle Scholar
  72. 72.
    Rich TC, Fagan KA, Tse TE, Schaack J, Cooper DM, Karpen JW (2001) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci USA 98:13049–13054PubMedCrossRefGoogle Scholar
  73. 73.
    Devic E, Xiang Y, Gould D, Kobilka B (2001) β-adrenergic receptor subtype-specific signaling in cardiac myocytes from β1 and β2 adrenoceptor knockout mice. Mol Pharmacol 60:577–583PubMedGoogle Scholar
  74. 74.
    Shimomura H, Imai A, Nashida T (2004) Evidence for the involvement of cAMP-GEF (Epac) pathway in amylase release from the rat parotid gland. Arch Biochem Biophys 431:124–128PubMedCrossRefGoogle Scholar
  75. 75.
    Ma X, Zhang Y, Gromada J, Sewing S, Berggren PO, Buschard K, Salehi A, Vikman J, Rorsman P, Eliasson L (2005) Glucagon stimulates exocytosis in mouse and rat pancreatic α-cells by binding to glucagon receptors. Mol Endocrinol 19:198–212PubMedCrossRefGoogle Scholar
  76. 76.
    Sedej S, Rose T, Rupnik M (2005) cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. J Physiol 567:799–813PubMedCrossRefGoogle Scholar
  77. 77.
    Zhong N, Zucker RS (2005) cAMP acts on exchange protein activated by cAMP/cAMP-regulated guanine nucleotide exchange protein to regulate transmitter release at the crayfish neuromuscular junction. J Neurosci 25:208–214PubMedCrossRefGoogle Scholar
  78. 78.
    Sakaba T, Neher E (2003) Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse. Nature 424:775–778PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Susumu Seino
    • 1
  • Takashi Miki
    • 1
  • Tadao Shibasaki
    • 1
  1. 1.Division of Cellular and Molecular MedicineKobe University Graduate School of MedicineKobeJapan

Personalised recommendations