Gap Junctions and Insulin Secretion

  • Philippe Klee
  • Sabine Bavamian
  • Anne Charollais
  • Dorothée Caille
  • José Cancela
  • Manon Peyrou
  • Paolo Meda


About 30 years ago, pancreatic beta cells were shown to be connected by gap junctions and to exhibit glucose-induced oscillatory electrical activity, two features that were hypothetically linked to insulin secretion. Since then, gap junctions have been shown to be an obligatory feature of beta cells in all species and all physiological conditions studied. They are composed of connexin proteins and allow for beta-cell to beta-cell exchanges of current-carrying ions and other small cytosolic metabolites which synchronize the electrical and metabolic activity of beta cells, and recruit these cells for insulin biosynthesis and release. Together, these effects account for the significant contribution of gap junction-dependent signaling to the control of insulin secretion. More recent data suggest that gap junctions, either via the expression of connexin proteins and/or of the intercellular communications that these proteins permit, also significantly influence beta-cell growth, apoptosis, and the resistance of islets to immune attack. The mechanism(s) whereby gap junction signaling exerts these multiple effects is still obscure. Understanding this mechanism is relevant both to our understanding of the physiology of pancreatic islets and to the pathophysiology of beta-cell dysfunction in both type 1 and type 2 diabetes. Furthermore, appropriate expression of gap junctions may be a prerequisite for the engineering of surrogate insulin-producing cells and their proper three-dimensional packaging, which may be important for using these cells as a cell-based therapy for the treatment of diabetic patients. Here, we review the current status of our knowledge in this field and its exciting perspectives.


Insulin Secretion Beta Cell Pancreatic Islet Cx36 Channel Primary Beta Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meda P (1997) Intercellular communication and insulin secretion. In: Zahnd GR, Wollheim CB (eds) Contributions of physiology to the understanding of diabetes. Springer, Berlin, pp 24–42Google Scholar
  2. 2.
    Meda P, Bosco D (2001) Communication of islet cells: molecules, mechanisms, functions. In: Habener JF, Hussein M (eds) Molecular basis of endocrine pancreas development and function. Kluwer, Dordrecht, pp 138–159Google Scholar
  3. 3.
    Salomon D, Meda P (1986) Heterogeneity and contact-dependent regulation of hormone secretion by individual B cells. Exp Cell Res 162:507–520PubMedCrossRefGoogle Scholar
  4. 4.
    Bosco D, Meda P (1991) Actively synthesizing beta cells secrete preferentially after glucose stimulation. Endocrinology 129:3157–3166PubMedCrossRefGoogle Scholar
  5. 5.
    Jonkers FC, Jonas JC, Gilon P, Henquin JC (1999) Influence of cell number on the characteristics and synchrony of Ca2+ oscillations in clusters of mouse pancreatic islet cells. J Physiol 520 Pt 3:839–849PubMedCrossRefGoogle Scholar
  6. 6.
    Philippe J, Giordano E, Gjinovci A, Meda P (1992) Cyclic adenosine monophosphate prevents the glucocorticoid-mediated inhibition of insulin gene expression in rodent islet cells. J Clin Invest 90:2228–2233PubMedCrossRefGoogle Scholar
  7. 7.
    Bosco D, Orci L, Meda P (1989) Homologous but not heterologous contact increases the insulin secretion of individual pancreatic B-cells. Exp Cell Res 184:72–80PubMedCrossRefGoogle Scholar
  8. 8.
    Orci L, Unger RH, Renold AE (1973) Structural coupling between pancreatic islet cells. Experientia 29:1015–1018PubMedCrossRefGoogle Scholar
  9. 9.
    Meissner HP (1976) Electrophysiological evidence for coupling between beta cells of pancreatic islets. Nature 262:502–504PubMedCrossRefGoogle Scholar
  10. 10.
    Meda P, Atwater I, Goncalves A, Bangham A, Orci L, Rojas E (1984) The topography of electrical synchrony among beta cells in the mouse islet of Langerhans. Q J Exp Physiol 69:719–735PubMedGoogle Scholar
  11. 11.
    Eddlestone GT, Goncalves A, Bangham JA, Rojas E (1984) Electrical coupling between cells in islets of Langerhans from mouse. J Membr Biol 77:1–14PubMedCrossRefGoogle Scholar
  12. 12.
    Mears D, Sheppard NF Jr, Atwater I, Rojas E (1995) Magnitude and modulation of pancreatic beta-cell gap junction electrical conductance in situ. J Membr Biol 146:163–176PubMedGoogle Scholar
  13. 13.
    Michon L, Nlend R, Bavamian S, Bischoff L, Boucard N, Caille D, Cancela J, Charollais A, Charpantier E, Klee P, Peyrou M, Populaire C, Zulianello L, Meda P (2005) Involvement of gap junctional communication in secretion. Biochim Biophys Acta 1719:82–101PubMedCrossRefGoogle Scholar
  14. 14.
    Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232PubMedCrossRefGoogle Scholar
  15. 15.
    Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14PubMedCrossRefGoogle Scholar
  16. 16.
    Hervé JC (ed) (2004) The connexins. Biochim Biophys Acta 1662:1–172Google Scholar
  17. 17.
    Bennett MV, Zheng X, Sogin ML (1994) The connexins and their family tree. Soc Gen Physiol Ser 49:223–233PubMedGoogle Scholar
  18. 18.
    Martin PE, Blundell G, Ahmad S, Errington RJ, Evans WH (2001) Multiple pathways in the trafficking and assembly of connexin 26, 32 and 43 into gap junction intercellular communication channels. J Cell Sci 114:3845–3855PubMedGoogle Scholar
  19. 19.
    Hervé JC (ed) (2005) The connexins, part II. Biochim Biophys Acta 1711:97–246Google Scholar
  20. 20.
    Larsen WJ, Tung HN, Murray SA, Swenson CA (1979) Evidence for the participation of actin microfilaments and bristle coats in the internalization of gap junction membrane. J Cell Biol 83:576–587PubMedCrossRefGoogle Scholar
  21. 21.
    Bevans CG, Harris AL (1999) Direct high affinity modulation of connexin channel activity by cyclic nucleotides. J Biol Chem 274:3720–3725PubMedCrossRefGoogle Scholar
  22. 22.
    Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse perm selectivity to adenosine and ATP. J Biol Chem 277:36725–36730PubMedCrossRefGoogle Scholar
  23. 23.
    Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472PubMedGoogle Scholar
  24. 24.
    Meda P, Perrelet A, Orci L (1979) Increase of gap junctions between pancreatic B-cells during stimulation of insulin secretion. J Cell Biol 82:441–448PubMedCrossRefGoogle Scholar
  25. 25.
    Meda P, Halban P, Perrelet A, Renold AE, Orci L (1980) Gap junction development is correlated with insulin content in the pancreatic B cell. Science 209:1026–1028PubMedCrossRefGoogle Scholar
  26. 26.
    Herve JC, Sarrouilhe D (2005) Connexin-made channels as pharmacological targets. Curr Pharm Des 11:1941–1958PubMedCrossRefGoogle Scholar
  27. 27.
    Dhein S (2004) Pharmacology of gap junctions in the cardiovascular system. Cardiovasc Res 62:287–298PubMedCrossRefGoogle Scholar
  28. 28.
    Meda P, Spray DC (2000) Gap junction function. Adv Mol Cell Biol 20:263–322Google Scholar
  29. 29.
    Richard G (2003) Connexin gene pathology. Clin Exp Dermatol 28:397–409PubMedCrossRefGoogle Scholar
  30. 30.
    Lo CW, Waldo KL, Kirby ML (1999) Gap junction communication and the modulation of cardiac neural crest cells. Trends Cardiovasc Med 9:63–69PubMedCrossRefGoogle Scholar
  31. 31.
    Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834PubMedCrossRefGoogle Scholar
  32. 32.
    Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH (1995) Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med 332:1323–1329PubMedCrossRefGoogle Scholar
  33. 33.
    Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418PubMedCrossRefGoogle Scholar
  34. 34.
    Rash JE, Staines WA, Yasumura T, Patel D, Furman CS, Stelmack GL, Nagy JI (2000) Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc Natl Acad Sci USA 97:7573–7578PubMedCrossRefGoogle Scholar
  35. 35.
    Long MA, Deans MR, Paul DL, Connors BW (2002) Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci 22:10898–10905PubMedGoogle Scholar
  36. 36.
    De Zeeuw CI, Chorev E, Devor A, Manor Y, Van Der Giessen RS, De Jeu MT, Hoogenraad CC, Bijman J, Ruigrok TJ, French P, Jaarsma D, Kistler WM, Meier C, Petrasch-Parwez E, Dermietzel R, Sohl G, Gueldenagel M, Willecke K, Yarom Y (2003) Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J Neurosci 23:4700–4711PubMedGoogle Scholar
  37. 37.
    Kistler WM, De Jeu MT, Elgersma Y, Van Der Giessen RS, Hensbroek R, Luo C, Koekkoek SK, Hoogenraad CC, Hamers FP, Gueldenagel M, Sohl G, Willecke K, De Zeeuw CI (2002) Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance. Ann N Y Acad Sci 978:391–404PubMedCrossRefGoogle Scholar
  38. 38.
    Sohl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6:191–200PubMedCrossRefGoogle Scholar
  39. 39.
    Sohl G, Guldenagel M, Beck H, Teubner B, Traub O, Gutierrez R, Heinemann U, Willecke K (2000) Expression of connexin genes in hippocampus of kainate-treated and kindled rats under conditions of experimental epilepsy. Brain Res Mol Brain Res 83:44–51PubMedCrossRefGoogle Scholar
  40. 40.
    Mas C, Taske N, Deutsch S, Guipponi M, Thomas P, Covanis A, Friis M, Kjeldsen MJ, Pizzolato GP, Villemure JG, Buresi C, Rees M, Malafosse A, Gardiner M, Antonarakis SE, Meda P (2004) Association of the connexin36 gene with juvenile myoclonic epilepsy. J Med Genet 41:e93–e98PubMedCrossRefGoogle Scholar
  41. 41.
    Firouzi M, Kok B, Spiering W, Busjahn A, Bezzina CR, Ruijter JM, Koeleman BP, Schipper M, Groenewegen WA, Jongsma HJ, de Leeuw PW (2006) Polymorphisms in human connexin40 gene promoter are associated with increased risk of hypertension in men. J Hypertens 24:325–330PubMedCrossRefGoogle Scholar
  42. 42.
    Gollob MH (2006) Cardiac connexins as candidate genes for idiopathic atrial fibrillation. Curr Opin Cardiol 21:155–158PubMedCrossRefGoogle Scholar
  43. 43.
    Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J, Lamers WH, Evert M, Meda P, Traub O, Willecke K (2000) Unique and shared functions of different connexins in mice. Curr Biol 10:1083–1091PubMedCrossRefGoogle Scholar
  44. 44.
    Haefliger JA, Krattinger N, Martin D, Pedrazzini T, Capponi A, Doring B, Plum A, Charollais A, Willecke K, Meda P (2006) Connexin43-dependent mechanism modulates renin secretion and hypertension. J Clin Invest 116:405–413PubMedCrossRefGoogle Scholar
  45. 45.
    Klee P, Boucard N, Caille D, Cancela J, Charollais A, Charpantier E, Michon L, Populaire C, Peyrou M, Nlend Nlend R, Zulianello L, Haefliger J, Meda P (2005) Connexin modulators of endocrine function. In: Winterhager D (ed) Gap junctions in development and disease. Springer, Berlin Heidelberg, pp 197–221CrossRefGoogle Scholar
  46. 46.
    Charollais A, Gjinovci A, Huarte J, Bauquis J, Nadal A, Martin F, Andreu E, Sanchez-Andres JV, Calabrese A, Bosco D, Soria B, Wollheim CB, Herrera PL, Meda P (2000) Junctional communication of pancreatic beta cells contributes to the control of insulin secretion and glucose tolerance. J Clin Invest 106:235–243PubMedCrossRefGoogle Scholar
  47. 47.
    Rukstalis JM, Kowalik A, Zhu L, Lidington D, Pin CL, Konieczny SF (2003) Exocrine specific expression of Connexin32 is dependent on the basic helix-loop-helix transcription factor Mist1. J Cell Sci 116:3315–3325PubMedCrossRefGoogle Scholar
  48. 48.
    Chanson M, Fanjul M, Bosco D, Nelles E, Suter S, Willecke K, Meda P (1998) Enhanced secretion of amylase from exocrine pancreas of connexin32-deficient mice. J Cell Biol 141:1267–1275PubMedCrossRefGoogle Scholar
  49. 49.
    Stout C, Goodenough DA, Paul DL (2004) Connexins: functions without junctions. Curr Opin Cell Biol 16:507–512PubMedCrossRefGoogle Scholar
  50. 50.
    Bukauskas FF, Kreuzberg MM, Rackauskas M, Bukauskiene A, Bennett MV, Verselis VK, Willecke K (2006) Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. Proc Natl Acad Sci USA 103:9726–92731PubMedCrossRefGoogle Scholar
  51. 51.
    Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385PubMedCrossRefGoogle Scholar
  52. 52.
    Iacobas DA, Iacobas S, Urban-Maldonado M, Spray DC (2005) Sensitivity of the brain transcriptome to connexin ablation. Biochim Biophys Acta 1711:183–196PubMedCrossRefGoogle Scholar
  53. 53.
    Li X, Olson C, Lu S, Nagy JI (2004) Association of connexin36 with zonula occludens-1 in HeLa cells, betaTC-3 cells, pancreas, and adrenal gland. Histochem Cell Biol 122:485–498PubMedGoogle Scholar
  54. 54.
    Serre-Beinier V, Le Gurun S, Belluardo N, Trovato-Salinaro A, Charollais A, Haefliger JA, Condorelli DF, Meda P (2000) Cx36 preferentially connects beta cells within pancreatic islets. Diabetes 49:727–734PubMedCrossRefGoogle Scholar
  55. 55.
    Theis M, Mas C, Doring B, Degen J, Brink C, Caille D, Charollais A, Kruger O, Plum A, Nepote V, Herrera P, Meda P, Willecke K (2004) Replacement by a lacZ reporter gene assigns mouse connexin36, 45 and 43 to distinct cell types in pancreatic islets. Exp Cell Res 294:18–29PubMedCrossRefGoogle Scholar
  56. 56.
    Degen J, Meier C, Van Der Giessen RS, Sohl G, Petrasch-Parwez E, Urschel S, Dermietzel R, Schilling K, De Zeeuw CI, Willecke K (2004) Expression pattern of lacZ reporter gene representing connexin36 in transgenic mice. J Comp Neurol 473: 511–525PubMedCrossRefGoogle Scholar
  57. 57.
    Collares-Buzato CB, Leite AR, Boschero AC (2001) Modulation of gap and adherens junctional proteins in cultured neonatal pancreatic islets. Pancreas 23:177–185PubMedCrossRefGoogle Scholar
  58. 58.
    Leite AR, Carvalho CP, Furtado AG, Barbosa HC, Boschero AC, Collares-Buzato CB (2005) Co-expression and regulation of connexins 36 and 43 in cultured neonatal rat pancreatic islets. Can J Physiol Pharmacol 83:142–151PubMedCrossRefGoogle Scholar
  59. 59.
    Li Y, Nagira T, Tsuchiya T (2006) The effect of hyaluronic acid on insulin secretion in HIT-T15 cells through the enhancement of gap-junctional intercellular communications. Biomaterials 27:1437–1443PubMedCrossRefGoogle Scholar
  60. 60.
    Condorelli DF, Parenti R, Spinella F, Trovato Salinaro A, Belluardo N, Cardile V, Cicirata F (1998) Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur J Neurosci 10:1202–1208PubMedCrossRefGoogle Scholar
  61. 61.
    Srinivas M, Rozental R, Kojima T, Dermietzel R, Mehler M, Condorelli DF, Kessler JA, Spray DC (1999) Functional properties of channels formed by the neuronal gap junction protein connexin36. J Neurosci 19:9848–9855PubMedGoogle Scholar
  62. 62.
    Moreno AP, Berthoud VM, Perez-Palacios G, Perez-Armendariz EM (2005) Biophysical evidence that connexin-36 forms functional gap junction channels between pancreatic mouse beta cells. Am J Physiol Endocrinol Metab 288:E948–E956PubMedCrossRefGoogle Scholar
  63. 63.
    Perez-Armendariz M, Roy C, Spray DC, Bennett MV (1991) Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophys J 59:76–92PubMedCrossRefGoogle Scholar
  64. 64.
    Kanno T, Gopel SO, Rorsman P, Wakui M (2002) Cellular function in multicellular system for hormone-secretion: electrophysiological aspect of studies on alpha-, beta-and delta-cells of the pancreatic islet. Neurosci Res 42:79–90PubMedCrossRefGoogle Scholar
  65. 65.
    Speier S, Gjinovci A, Charollais A, Meda P, Rupnik M (2007) Cx36-mediated coupling reduces beta-cell heterogeneity, confines the stimulating glucose concentration range and affects insulin release kinetics. Diabetes 56:1078–1086PubMedCrossRefGoogle Scholar
  66. 66.
    Meda P, Michaels RL, Halban PA, Orci L, Sheridan JD (1983) In vivo modulation of gap junctions and dye coupling between B-cells of the intact pancreatic islet. Diabetes 32:858–868PubMedCrossRefGoogle Scholar
  67. 67.
    Caton D, Calabrese A, Mas C, Serre-Beinier V, Charollais A, Caille D, Zufferey R, Trono D, Meda P (2003) Lentivirus-mediated transduction of connexin cDNAs shows level-and isoform-specific alterations in insulin secretion of primary pancreatic β-cells. J Cell Sci 116:2285–2294PubMedCrossRefGoogle Scholar
  68. 68.
    Calabrese A, Zhang M, Serre-Beinier V, Caton D, Mas C, Satin LS, Meda P (2003) Connexin 36 controls synchronization of Ca2+ oscillations and insulin secretion in MIN6 cells. Diabetes 52:417–424PubMedCrossRefGoogle Scholar
  69. 69.
    Quesada I, Fuentes E, Andreu E, Meda P, Nadal A, Soria B (2003) On-line analysis of gap junctions reveals more efficient electrical than dye coupling between islet cells. Am J Physiol Endocrinol Metab 284:E980–E987PubMedGoogle Scholar
  70. 70.
    Ravier MA, Guldenagel M, Charollais A, Gjinovci A, Caille D, Sohl G, Wollheim CB, Willecke K, Henquin JC, Meda P (2005) Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54:1798–1807PubMedCrossRefGoogle Scholar
  71. 71.
    Kohen E, Kohen C, Thorell B, Mintz DH, Rabinovitch A (1979) Intercellular communication in pancreatic islet monolayer cultures: a microfluorometric study. Science 204:862–865PubMedCrossRefGoogle Scholar
  72. 72.
    Meda P, Amherdt M, Perrelet A, Orci L (1981) Metabolic coupling between cultured pancreatic b-cells. Exp Cell Res 133:421–430PubMedCrossRefGoogle Scholar
  73. 73.
    Meda P, Bosco D, Chanson M, Giordano E, Vallar L, Wollheim C, Orci L (1990) Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J Clin Invest 86:759–768PubMedCrossRefGoogle Scholar
  74. 74.
    Giordano E, Bosco D, Cirulli V, Meda P (1991) Repeated glucose stimulation reveals distinct and lasting secretion patterns of individual rat pancreatic B cells. J Clin Invest 87:2178–2185PubMedCrossRefGoogle Scholar
  75. 75.
    Fernandez J, Valdeolmillos M (2000) Synchronous glucose-dependent [Ca(2+)](i) oscillations in mouse pancreatic islets of Langerhans recorded in vivo. FEBS Lett 477:33–36PubMedCrossRefGoogle Scholar
  76. 76.
    Bruzzone R, Meda P (1988) The gap junction: a channel for multiple functions? Eur J Clin Invest 18:444–453PubMedCrossRefGoogle Scholar
  77. 77.
    Vozzi C, Ullrich S, Charollais A, Philippe J, Orci L, Meda P (1995) Adequate connexin-mediated coupling is required for proper insulin production. J Cell Biol 131: 1561–1572PubMedCrossRefGoogle Scholar
  78. 78.
    Guldenagel M, Ammermuller J, Feigenspan A, Teubner B, Degen J, Sohl G, Willecke K, Weiler R (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21:6036–6044PubMedGoogle Scholar
  79. 79.
    Calabrese A, Caton D, Meda P (2004) Differentiating the effects of Cx36 and E-cadherin for proper insulin secretion of MIN6 cells. Exp Cell Res 294:379–391PubMedCrossRefGoogle Scholar
  80. 80.
    Le Gurun S, Martin D, Formenton A, Maeschler P, Caille D, Waeber G, Meda P, Haefliger JA (2003) Connexin36 contributes to control function of insulin-producing cells. J Biol Chem 278:37690–37697PubMedCrossRefGoogle Scholar
  81. 81.
    Meda P (1996) The role of gap junction membrane channels in secretion and hormonal action. J Bioenerg Biomembr 28:369–377PubMedCrossRefGoogle Scholar
  82. 82.
    Rocheleau JV, Remedi MS, Granada B, Head WS, Koster JC, Nichols CG, Piston DW (2006) Critical role of gap junction coupled KATP channel activity for regulated insulin secretion. PLoS Biol 4:e26PubMedCrossRefGoogle Scholar
  83. 83.
    Allagnat F, Martin D, Condorelli DF, Waeber G, Haefliger JA (2005) Glucose represses connexin36 in insulin-secreting cells. J Cell Sci 118:5335–5344PubMedCrossRefGoogle Scholar
  84. 84.
    Meier JJ, Lin JC, Butler AE, Galasso R, Martinez DS, Butler PC (2006) Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia 49:1838–1844PubMedCrossRefGoogle Scholar
  85. 85.
    Mori Y, Otabe S, Dina C, Yasuda K, Populaire C, Lecoeur C, Vatin V, Durand E, Hara K, Okada T, Tobe K, Boutin P, Kadowaki T, Froguel P (2002) Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate Loci on 7p and 11p. Diabetes 51:1247–1255PubMedCrossRefGoogle Scholar
  86. 86.
    Belluardo N, Trovato-Salinaro A, Mudo G, Hurd YL, Condorelli DF (1999) Structure, chromosomal localization, and brain expression of human Cx36 gene. J Neurosci Res 57:740–752PubMedCrossRefGoogle Scholar
  87. 87.
    Mas C, Calabrese A, Caton D, Serre-Beinier V, Meda P (2002) Identification of a new gene involved in glucose-stimulated insulin secretion. Diabetologia 45suppl 2:A85Google Scholar
  88. 88.
    Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394PubMedCrossRefGoogle Scholar
  89. 89.
    Huettner JE, Lu A, Qu Y, Wu Y, Kim M, McDonald JW (2006) Gap junctions and connexon hemichannels in human embryonic stem cells. Stem Cells 24:1654–1667PubMedCrossRefGoogle Scholar
  90. 90.
    Klee P, Charollais A, Caille D, Meda P (2004) Role of connexin proteins in the protection of pancreatic beta cells against cytotoxic attacks. Proceedings Prien post-EASD Meeting: 22Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Philippe Klee
    • 1
  • Sabine Bavamian
    • 1
  • Anne Charollais
    • 1
  • Dorothée Caille
    • 1
  • José Cancela
    • 1
  • Manon Peyrou
    • 1
  • Paolo Meda
    • 1
  1. 1.Department of Cell Physiology and MetabolismUniversity of Geneva, Medical SchoolGenève 4Switzerland

Personalised recommendations