Ion Channels and Insulin Secretion

  • David A. Jacobson
  • Louis H. Philipson


Pancreatic beta cells respond to glucose and other secretagogues with electrical activity. Action potentials are the primary electrical signal of the beta cell and are shaped by the orchestrated flux of ions through various types of ion channels. The expression of a diverse set of ion channels allows dynamic modulation of action potentials in response to multiple input signals. This chapter provides an overview of the ion channels of the beta cell and their role in the regulation of insulin secretion.


Insulin Secretion Beta Cell Pancreatic Islet Transient Receptor Potential Channel Insulinoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dean PM, Matthews EK (1968) Electrical activity on pancreatic islet cells. Nature 219:389–390PubMedCrossRefGoogle Scholar
  2. 2.
    Dean PM, Matthews EK (1970) Glucose-induced electrical activity in pancreatic islet cells. J Physiol 210:255–264PubMedGoogle Scholar
  3. 3.
    Dean PM, Matthews EK (1970) Electrical activity in pancreatic islet cells: effect of ions. J Physiol 210:265–275PubMedGoogle Scholar
  4. 4.
    Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta cell. Prog Biophys Mol Biol 54:187–143CrossRefGoogle Scholar
  5. 5.
    Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311:271–273PubMedCrossRefGoogle Scholar
  6. 6.
    Ashcroft FM, Harrison DE, Ashcroft SJ (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic beta cells. Nature 312:446–448PubMedCrossRefGoogle Scholar
  7. 7.
    Shyng S, Ferrigni T, Nichols CG (1997) Control of rectification and gating of cloned KATP channels by the Kir6.2 subunit. J Gen Physiol 110:141–153PubMedCrossRefGoogle Scholar
  8. 8.
    Wollheim CB, Sharp GW (1981) Regulation of insulin release by calcium. Physiol Rev 61:914–973PubMedGoogle Scholar
  9. 9.
    Seino S, Chen L, Seino M, Blondel O, Takeda J, Johnson JH, Bell GI (1992) Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci USA 89:584–588PubMedCrossRefGoogle Scholar
  10. 10.
    Yaney GC, Wheeler MB, Wei X, Perez-Reyes E, Birnbaumer L, Boyd AE 3rd, Moss LG (1992) Cloning of a novel alpha 1-subunit of the voltage-dependent calcium channel from the beta-cell. Mol Endocrinol 6:2143–2152PubMedCrossRefGoogle Scholar
  11. 11.
    Vignali S, Leiss V, Karl R, Hofmann F, Welling A (2006) Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic A-and B-cells. J Physiol 572:691–706PubMedGoogle Scholar
  12. 12.
    Longo EA, Tornheim K, Deeney JT, Varnum BA, Tillotson D, Prentki M, Corkey BE (1991) Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J Biol Chem 266:9314–9319PubMedGoogle Scholar
  13. 13.
    Barbosa RM, Silva AM, Tome AR, Stamford JA, Santos RM, Rosario LM (1998) Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium dynamics. J Physiol 510:135–143PubMedCrossRefGoogle Scholar
  14. 14.
    Pedersen MG, Bertram R, Sherman A (2005) Intra-and inter-islet synchronization of metabolically driven insulin secretion. Biophys J 89:107–119PubMedCrossRefGoogle Scholar
  15. 15.
    Nunemaker CS, Zhang M, Wasserman DH, McGuinness OP, Powers AC, Bertram R, Sherman A, Satin LS (2005) Individual mice can be distinguished by the period of their islet calcium oscillations: is there an intrinsic islet period that is imprinted in vivo. Diabetes 54:3517–3522PubMedCrossRefGoogle Scholar
  16. 16.
    Dukess ID, Roe MW, Worley JF III, Philipson LH (1997) Glucose-induced alterations in beta-cell cytoplasmic calcium: coupling of intracellular calcium stores and plasma membrane ion channels. Curr Opin Endocrinol Diabetes 4:262–271CrossRefGoogle Scholar
  17. 17.
    Meissner HP, Schmeer W (1981) The Significance of calcium ions for the glucoseinduced electrical activity of the pancreatic beta cells. In: Ohnishi S, Endo M (eds) The mechanism of gated calcium transport across biological membranes. Academic Press, New York, pp 157–165Google Scholar
  18. 18.
    Lebrun P, Atwater I. (1985) Effects of the calcium channel agonist, BAY K 8644, on electrical activity in mouse pancreatic B-cells. Biophys J 48:919–930PubMedCrossRefGoogle Scholar
  19. 19.
    Gilon P, Henquin JC (1992) Influence of membrane potential changes on cytoplasmic Ca2+ concentration in an electrically excitable cell, the insulin-secreting pancreatic B-cell. J Biol Chem 267:20713–20720PubMedGoogle Scholar
  20. 20.
    Bokvist K, Eliasson L, Ammala C, Renstrom E, Rorsman P (1995) Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO J 14:50–57PubMedGoogle Scholar
  21. 21.
    Barg S, Eliasson L, Renstrom E, Rorsman P (2002) A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse beta-cells. Diabetes 51:S74–S82PubMedCrossRefGoogle Scholar
  22. 22.
    Grabner M, Dirksen RT, Suda N, Beam KG (1999) The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J Biol Chem 274:21913–21919PubMedCrossRefGoogle Scholar
  23. 23.
    Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720PubMedCrossRefGoogle Scholar
  24. 24.
    Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41–51PubMedCrossRefGoogle Scholar
  25. 25.
    Schulla V, Renstrom E, Feil R, Feil S, Franklin I, Gjinovci A, Jing XJ, Laux D, Lundquist I, Magnuson MA, Obermuller S, Olofsson CS, Salehi A, Wendt A, Klugbauer N, Wollheim CB, Rorsman P, Hofmann F (2003) Impaired insulin secretion and glucose tolerance in beta cell-selective Ca(v)1.2 Ca2+ channel null mice. EMBO J 22:3844–3854PubMedCrossRefGoogle Scholar
  26. 26.
    Hellman B, Idahl LA, Lernmark A, Sehlin J, Taljedal IB (1974) The pancreatic beta-cell recognition of insulin secretagogues. Effects of calcium and sodium on glucose metabolism and insulin release. Biochem J 138:33–45PubMedGoogle Scholar
  27. 27.
    Donatsch P, Lowe DA, Richardson BP, Taylor P (1977) The functional significance of sodium channels in pancreatic beta-cell membranes. J Physiol 267:357–376PubMedGoogle Scholar
  28. 28.
    de Miguel R, Tamagawa T, Schmeer W, Nenquin M, Henquin JC (1988) Effects of acute sodium omission on insulin release, ionic flux and membrane potential in mouse pancreatic B-cells. Biochim Biophys Acta 969:198–207PubMedCrossRefGoogle Scholar
  29. 29.
    Pressel DM, Misler S (1990) Sodium channels contribute to action potential generation in canine and human pancreatic islet B cells. J Membr Biol 1990 116:273–280PubMedCrossRefGoogle Scholar
  30. 30.
    Hattori M, Kai R, Kitasato H (1994) Effects of lowering external Na+ concentration on cytoplasmic pH and Ca2+ concentration in mouse pancreatic beta-cells: mechanism of periodicity of spike-bursts. Jpn J Physiol 44:283–293PubMedCrossRefGoogle Scholar
  31. 31.
    Kitasato H, Kai R, Ding WG, Omatsu-Kanbe M (1996) The intrinsic rhythmicity of spike-burst generation in pancreatic beta cells and intercellular interaction within an islet. Jpn J Physiol 46:363–373PubMedCrossRefGoogle Scholar
  32. 32.
    Barnett DW, Pressel DM, Misler S (1995) Voltage-dependent Na+ and Ca2+ currents in human pancreatic islet beta cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch 431:272–282PubMedCrossRefGoogle Scholar
  33. 33.
    Philipson LH, Kusnetsov A, Larson T, Zeng Y, Westermark G (1993) Human, rodent, and canine pancreatic beta-cells express a sodium channel alpha 1-subunit related to a fetal brain isoform. Diabetes 42:1372–1377PubMedCrossRefGoogle Scholar
  34. 34.
    Tabcharani JA, Misler S (1989) Ca2+-activated K+ channel in rat pancreatic islet B cells: permeation, gating and blockade by cations. Biochim Biophys Acta 982:62–72PubMedCrossRefGoogle Scholar
  35. 35.
    Gopel SO, Kanno T, Barg S, Eliasson L, Galvanovskis J, Renstrom E, Rorsman P (1999) Activation of Ca2+-dependent K+ channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 114:759–770PubMedCrossRefGoogle Scholar
  36. 36.
    Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J, Philipson LH (2003) Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 52:2000–2006PubMedCrossRefGoogle Scholar
  37. 37.
    Ferrer J, Wasson J, Salkoff L, Permutt MA (1996) Cloning of human pancreatic islet large conductance Ca2+-activated K+ channel (hSlo) cDNAs: evidence for high levels of expression in pancreatic islets and identification of a flanking genetic marker. Diabetologia 39:891–898PubMedGoogle Scholar
  38. 38.
    Atwater I, Ribalet B, Rojas E (1979) Mouse pancreatic beta cells: tetraethylammonium blockage of the potassium permeability increase induced by depolarization. J Physiol 288:561–574PubMedGoogle Scholar
  39. 39.
    Kukuljan M, Goncalves AA, Atwater I (1991) Charybdotoxin-sensitive K(Ca) channel is not involved in glucose-induced electrical activity in pancreatic beta-cells. J Membr Biol 119:187–195PubMedCrossRefGoogle Scholar
  40. 40.
    Henquin JC (1990) Role of voltage-and Ca2+-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells. Pflugers Arch 416:568–572PubMedCrossRefGoogle Scholar
  41. 41.
    MacDonald PE, Sewing S, Wang J, Joseph JW, Smukler SR, Sakellaropoulos G, Wang J, Saleh MC, Chan CB, Tsushima RG, Salapatek AM, Wheeler MB (2002) Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucosedependent insulin secretion. J Biol Chem 277:44938–44945PubMedCrossRefGoogle Scholar
  42. 42.
    Lebrun P, Atwater I, Claret M, Malaisse WJ, Herchuelz A (1983) Resistance to apamin of the Ca2+-activated K+ permeability in pancreatic B-cells. FEBS Lett 161:41–44PubMedCrossRefGoogle Scholar
  43. 43.
    Atwater I, Ribalet B, Rojas E (1978) Cyclic changes in potential and resistance of the beta-cell membrane induced by glucose in islets of Langerhans from mouse. J Physiol 278:117–139PubMedGoogle Scholar
  44. 44.
    Henquin JC, Meissner HP, Preissler M (1979) 9-Aminoacridine-and tetraethylam-monium-induced reduction of the potassium permeability in pancreatic B-cells. Effects on insulin release and electrical properties. Biochim Biophys Acta 587: 579–592PubMedGoogle Scholar
  45. 45.
    Kozak JA, Misler S, Logothetis DE (1998) Characterization of a Ca2+-activated K+ current in insulin-secreting murine betaTC-3 cells. J Physiol 509:355–370PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang M, Houamed K, Kupershmidt S, Roden D, Satin LS (2005) Pharmacological properties and functional role of Kslow current in mouse pancreatic beta-cells: SK channels contribute to Kslow tail current and modulate insulin secretion. J Gen Physiol 126:353–363PubMedCrossRefGoogle Scholar
  47. 47.
    Dukes ID, Philipson LH (1996) K+ channels: generating excitement in pancreatic beta cells. Diabetes 45:845–853PubMedCrossRefGoogle Scholar
  48. 48.
    Yan L, Figueroa DJ, Austin CP, Liu Y, Bugianesi RM, Slaughter RS, Kaczorowski GJ, Kohler MG (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53:597–607PubMedCrossRefGoogle Scholar
  49. 49.
    Covarrubias M, Wei A, Salkoff L (1991) Shaker, Shal, Shab, and Shaw express independent K+ current systems Neuron 7:763–773PubMedCrossRefGoogle Scholar
  50. 50.
    Lee TE, Philipson LH, Kuznetsov A, Nelson DJ (1994) Structural determinant for assembly of mammalian K+ channels. Biophys J 66:667–673PubMedGoogle Scholar
  51. 51.
    Hugnot JP, Salinas M, Lesage F, Guillemare E, de Weille J, Heurteaux C, Mattei MG, Lazdunski M (1996) Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J 15:3322–3331PubMedGoogle Scholar
  52. 52.
    Post MA, Kirsch GE, Brown AM (1996) Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and express a novel current. FEBS Lett 399:177–182PubMedCrossRefGoogle Scholar
  53. 53.
    Betsholtz C, Baumann A, Kenna S, Ashcroft FM, Ashcroft SJH, Berggren P, Grupe A, Pongs O, Rorsman P, Sandblom J, Welsh M (1990) Expression of voltage-gated K+ channels in insulin-producing cells. FEBS Lett 263:121–126PubMedCrossRefGoogle Scholar
  54. 54.
    Baumann A, Krah-Jentgers I, Muller R, Muller-Holtkamp F (1987) Molecular organization of the maternal effect region of Drosophila: characterization of an IA channel with homology to vertebrate Na channel. EMBO J 6:3419–3429PubMedGoogle Scholar
  55. 55.
    Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and cDNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753PubMedCrossRefGoogle Scholar
  56. 56.
    Philipson L, Hice RE, Schaefer K, LaMendola J, Bell GI, Nelson DJ, Steiner DF (1991) Sequence and functional expression in Xenopus oocytes of a human insulinoma and islet potassium channel. Proc Natl Acad Sci USA 88:53–57PubMedCrossRefGoogle Scholar
  57. 57.
    Philipson LH, Rosenberg MP, Kuznetsov A, Lancaster ME, Worley JF III, Roe MW, Dukes ID (1994) Delayed rectifier K+ channel overexpression in transgenic islets and beta-cells associated with impaired glucose responsiveness. J Biol Chem 269: 27787–27790PubMedGoogle Scholar
  58. 58.
    Philipson LH (1999) Beta-cell ion channels: keys to endodermal excitability. Horm Metab Res 31:455–461PubMedGoogle Scholar
  59. 59.
    Roe MW, Worley JF III, Mittal AA, Kuznetsov A, DasGupta S, Mertz RJ, Witherspoon SM III, Blair N, Lancaster ME, McIntyre MS, Shehee R, Dukes ID, Philipson LH (1996) Expression and function of pancreatic beta-cell delayed rectifier K+ channels: role in stimulus-secretion coupling. J Biol Chem 271:32241–32246PubMedCrossRefGoogle Scholar
  60. 60.
    MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AM, Backx PH, Wheeler MB (2001) Members of the Kv1 and Kv2 voltage-dependent K+ channel families regulate insulin secretion. Mol Endocrinol 15:1423–1435PubMedCrossRefGoogle Scholar
  61. 61.
    MacDonald PE, Wang G, Tsuk S, Dodo C, Kang Y, Tang L, Wheeler MB, Cattral MS, Lakey JR, Salapatek AM, Lotan I, Gaisano HY (2002) Synaptosome-associated protein of 25 kilodaltons modulates Kv2.1 voltage-dependent K+ channels in neuroendocrine islet beta cells through an interaction with the channel N terminus. Mol Endocrinol 16:2452–2461PubMedCrossRefGoogle Scholar
  62. 62.
    Herrington J, Sanchez M, Wunderler D, Yan L, Bugianesi RM, Dick IE, Clark SA, Brochu RM, Priest BT, Kohler MG, McManus OB (2005) Biophysical and pharmacological properties of the voltage-gated potassium current of human pancreatic beta-cells. J Physiol 567 Pt 1:159–175PubMedCrossRefGoogle Scholar
  63. 63.
    Tamarina NA, Kuznetsov A, Fridlyand LE, Philipson LH (2005) Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling. Am J Physiol Endocrinol Metab 289:578–585CrossRefGoogle Scholar
  64. 64.
    Herrington J, Zhou YP, Bugianesi RM, Dulski PM, Feng Y, Warren VA, Smith MM, Kohler MG, Garsky VM, Sanchez M, Wagner M, Raphaelli K, Banerjee P, Ahaghotu C, Wunderler D, Priest BT, Mehl JT, Garcia ML, McManus OB, Kaczorowski GJ, Slaughter RS (2006) Blockers of the delayed-rectifier potassium current in pancreatic beta-cells enhance glucose-dependent insulin secretion. Diabetes 55:1034–1042PubMedCrossRefGoogle Scholar
  65. 65.
    MacDonald PE, Sewing S, Wang J, Joseph JW, Smukler SR, Sakellaropoulos G, Wang J, Saleh MC, Chan CB, Tsushima RG, Salapatek AM, Wheeler MB (2002) Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion. J Biol Chem 277:44938–44945PubMedCrossRefGoogle Scholar
  66. 66.
    MacDonald PE, Salapatek AM, Wheeler MB (2002) Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K+ currents in beta cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 51:S443–S447PubMedCrossRefGoogle Scholar
  67. 67.
    Misonou H, Mohapatra DP, Park EW, Leung V, Zhen D, Misonou K, Anderson AE, Trimmer JS (2004) Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci 7:711–718PubMedCrossRefGoogle Scholar
  68. 68.
    McKay MC, Worley JF 3rd (2001) Linoleic acid both enhances activation and blocks Kv1.5 and Kv2.1 channels by two separate mechanisms. Am J Physiol Cell Physiol 281: C1277–C1284PubMedGoogle Scholar
  69. 69.
    Feng DD, Luo Z, Roh SG, Hernandez M, Tawadros N, Keating DJ, Chen C (2006) Reduction in voltage-gated K+ currents in primary cultured rat pancreatic beta cells by linoleic acids. Endocrinology 147:674–682PubMedCrossRefGoogle Scholar
  70. 70.
    Jacobson DA, Weber CR, Bao S, Turk J, Philipson LH (2007) Modulation of the pancreatic islet beta cell delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J Biol Chem 282:7442–7449PubMedCrossRefGoogle Scholar
  71. 71.
    Wolf BA, Pasquale SM, Turk J (1991) Free fatty acid accumulation in secretagogue-stimulated pancreatic islets and effects of arachidonate on depolarization-induced insulin secretion. Biochemistry 30:6372–6379PubMedCrossRefGoogle Scholar
  72. 72.
    Sakura H, Ashcroft FM (1997) Identification of four trp1 gene variants murine pancreatic beta cells. Diabetologia 40:528–532PubMedCrossRefGoogle Scholar
  73. 73.
    Roe MW, Worley JF 3rd, Qian F, Tamarina N, Mittal AA, Dralyuk F, Blair NT, Mertz RJ, Philipson LH, Dukes ID (1998) Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived beta-cells. J Biol Chem 273:10402–10410PubMedCrossRefGoogle Scholar
  74. 74.
    Qian F, Huang P, Ma L, Kuznetsov A, Tamarina N, Philipson LH (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51Suppl 1:S183–S189PubMedCrossRefGoogle Scholar
  75. 75.
    Inamura K, Sano Y, Mochizuki S, Yokoi H, Miyake A, Nozawa K, Kitada C, Matsushime H, Furuichi K (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201–207PubMedCrossRefGoogle Scholar
  76. 76.
    Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100:15166–15171PubMedCrossRefGoogle Scholar
  77. 77.
    Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic beta cells. Cell Calcium 41:51–61PubMedCrossRefGoogle Scholar
  78. 78.
    Akiba Y, Kato S, Katsube K, Nakamura M, Takeuchi K, Ishii H, Hibi T (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321:219–225PubMedCrossRefGoogle Scholar
  79. 79.
    Sturgess NC, Carrington CA, Hales CN, Ashford ML (1987) Calcium and ATP regulate the activity of a non-selective cation channel in a rat insulinoma cell line. Pflugers Arch 409:607–615PubMedCrossRefGoogle Scholar
  80. 80.
    Sturgess NC, Carrington CA, Hales CN, Ashford ML (1987) Nucleotide-sensitive ion channels in human insulin producing tumour cells. Pflugers Arch 410:169–172PubMedCrossRefGoogle Scholar
  81. 81.
    Herson PS, Ashford ML (1997) Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. J Physiol 501: 59–66PubMedCrossRefGoogle Scholar
  82. 82.
    Herson PS, Lee K, Pinnock RD, Hughes J, Ashford ML (1999) Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line. J Biol Chem 274:833–841PubMedCrossRefGoogle Scholar
  83. 83.
    Karlsson S, Scheurink AJ, Steffens AB, Ahren B (1994) Involvement of capsaicin-sensitive nerves in regulation of insulin secretion and glucose tolerance in conscious mice. Am J Physiol 267:R1071–R1077PubMedGoogle Scholar
  84. 84.
    Carlsson PO, Sandler S, Jansson L (1996) Influence of the neurotoxin capsaicin on rat pancreatic islets in culture, and on the pancreatic islet blood flow of rats. Eur J Pharmacol 312:75–81PubMedCrossRefGoogle Scholar
  85. 85.
    Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J, Tsui H, Tang L, Tsai S, Santamaria P, Driver JP, Serreze D, Salter MW, Dosch HM (2006) TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127:1123–1135PubMedCrossRefGoogle Scholar
  86. 86.
    Gram DX, Ahren B, Nagy I, Olsen UB, Brand CL, Sundler F, Tabanera R, Svendsen O, Carr RD, Santha P, Wierup N, Hansen AJ (2007) Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci 25: 213–223PubMedCrossRefGoogle Scholar
  87. 87.
    Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, Thevenod F, Renstrom E (2001) Priming of insulin granules for exocytosis by granular Cl− uptake and acidification. J Cell Sci 114:2145–2154PubMedGoogle Scholar
  88. 88.
    Stalvey MS, Muller C, Schatz DA, Wasserfall CH, Campbell-Thompson ML, Theriaque DW, Flotte TR, Atkinson MA (2006) Cystic fibrosis transmembrane conductance regulator deficiency exacerbates islet cell dysfunction after beta-cell injury. Diabetes 55:1939–1945PubMedCrossRefGoogle Scholar
  89. 89.
    Rorsman P, Berggren PO, Bokvist K, Ericson H, Mohler H, Ostenson CG, Smith PA (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341:233–236PubMedCrossRefGoogle Scholar
  90. 90.
    Gonoi T, Mizuno N, Inagaki N, Kuromi H, Seino Y, Miyazaki J, Seino S (1994) Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J Biol Chem 269:16989–16992PubMedGoogle Scholar
  91. 91.
    Inagaki N, Kuromi H, Gonoi T, Okamoto Y, Ishida H, Seino Y, Kaneko T, Iwanaga T, Seino S (1996) Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J 9:686–691Google Scholar
  92. 92.
    Wang CZ, Namba N, Gonoi T, Inagaki N, Seino S (1996) Cloning and pharmacological characterization of a fourth P2X receptor subtype widely expressed in brain and peripheral tissues including various endocrine tissues. Biochem Biophys Res Commun 220:196–202PubMedCrossRefGoogle Scholar
  93. 93.
    Poulsen CR, Bokvist K, Olsen HL, Hoy M, Capito K, Gilon P, Gromada J (1999) Multiple sites of purinergic control of insulin secretion in mouse pancreatic beta-cells. Diabetes 48:2171–2181PubMedCrossRefGoogle Scholar
  94. 94.
    Gopel SO, Kanno T, Barg S, Rorsman P (2000) Patch-clamp characterisation of somatostatin-secreting cells in intact mouse pancreatic islets. J Physiol 528:497–507PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • David A. Jacobson
    • 1
  • Louis H. Philipson
    • 1
  1. 1.Department of MedicineThe University of ChicagoChicagoUSA

Personalised recommendations