Skip to main content

Ion Channels and Insulin Secretion

  • Chapter

Abstract

Pancreatic beta cells respond to glucose and other secretagogues with electrical activity. Action potentials are the primary electrical signal of the beta cell and are shaped by the orchestrated flux of ions through various types of ion channels. The expression of a diverse set of ion channels allows dynamic modulation of action potentials in response to multiple input signals. This chapter provides an overview of the ion channels of the beta cell and their role in the regulation of insulin secretion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dean PM, Matthews EK (1968) Electrical activity on pancreatic islet cells. Nature 219:389–390

    Article  PubMed  CAS  Google Scholar 

  2. Dean PM, Matthews EK (1970) Glucose-induced electrical activity in pancreatic islet cells. J Physiol 210:255–264

    PubMed  CAS  Google Scholar 

  3. Dean PM, Matthews EK (1970) Electrical activity in pancreatic islet cells: effect of ions. J Physiol 210:265–275

    PubMed  CAS  Google Scholar 

  4. Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta cell. Prog Biophys Mol Biol 54:187–143

    Article  Google Scholar 

  5. Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311:271–273

    Article  PubMed  CAS  Google Scholar 

  6. Ashcroft FM, Harrison DE, Ashcroft SJ (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic beta cells. Nature 312:446–448

    Article  PubMed  CAS  Google Scholar 

  7. Shyng S, Ferrigni T, Nichols CG (1997) Control of rectification and gating of cloned KATP channels by the Kir6.2 subunit. J Gen Physiol 110:141–153

    Article  PubMed  CAS  Google Scholar 

  8. Wollheim CB, Sharp GW (1981) Regulation of insulin release by calcium. Physiol Rev 61:914–973

    PubMed  CAS  Google Scholar 

  9. Seino S, Chen L, Seino M, Blondel O, Takeda J, Johnson JH, Bell GI (1992) Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci USA 89:584–588

    Article  PubMed  CAS  Google Scholar 

  10. Yaney GC, Wheeler MB, Wei X, Perez-Reyes E, Birnbaumer L, Boyd AE 3rd, Moss LG (1992) Cloning of a novel alpha 1-subunit of the voltage-dependent calcium channel from the beta-cell. Mol Endocrinol 6:2143–2152

    Article  PubMed  CAS  Google Scholar 

  11. Vignali S, Leiss V, Karl R, Hofmann F, Welling A (2006) Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic A-and B-cells. J Physiol 572:691–706

    PubMed  CAS  Google Scholar 

  12. Longo EA, Tornheim K, Deeney JT, Varnum BA, Tillotson D, Prentki M, Corkey BE (1991) Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J Biol Chem 266:9314–9319

    PubMed  CAS  Google Scholar 

  13. Barbosa RM, Silva AM, Tome AR, Stamford JA, Santos RM, Rosario LM (1998) Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium dynamics. J Physiol 510:135–143

    Article  PubMed  CAS  Google Scholar 

  14. Pedersen MG, Bertram R, Sherman A (2005) Intra-and inter-islet synchronization of metabolically driven insulin secretion. Biophys J 89:107–119

    Article  PubMed  CAS  Google Scholar 

  15. Nunemaker CS, Zhang M, Wasserman DH, McGuinness OP, Powers AC, Bertram R, Sherman A, Satin LS (2005) Individual mice can be distinguished by the period of their islet calcium oscillations: is there an intrinsic islet period that is imprinted in vivo. Diabetes 54:3517–3522

    Article  PubMed  CAS  Google Scholar 

  16. Dukess ID, Roe MW, Worley JF III, Philipson LH (1997) Glucose-induced alterations in beta-cell cytoplasmic calcium: coupling of intracellular calcium stores and plasma membrane ion channels. Curr Opin Endocrinol Diabetes 4:262–271

    Article  Google Scholar 

  17. Meissner HP, Schmeer W (1981) The Significance of calcium ions for the glucoseinduced electrical activity of the pancreatic beta cells. In: Ohnishi S, Endo M (eds) The mechanism of gated calcium transport across biological membranes. Academic Press, New York, pp 157–165

    Google Scholar 

  18. Lebrun P, Atwater I. (1985) Effects of the calcium channel agonist, BAY K 8644, on electrical activity in mouse pancreatic B-cells. Biophys J 48:919–930

    Article  PubMed  CAS  Google Scholar 

  19. Gilon P, Henquin JC (1992) Influence of membrane potential changes on cytoplasmic Ca2+ concentration in an electrically excitable cell, the insulin-secreting pancreatic B-cell. J Biol Chem 267:20713–20720

    PubMed  CAS  Google Scholar 

  20. Bokvist K, Eliasson L, Ammala C, Renstrom E, Rorsman P (1995) Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO J 14:50–57

    PubMed  CAS  Google Scholar 

  21. Barg S, Eliasson L, Renstrom E, Rorsman P (2002) A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse beta-cells. Diabetes 51:S74–S82

    Article  PubMed  CAS  Google Scholar 

  22. Grabner M, Dirksen RT, Suda N, Beam KG (1999) The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J Biol Chem 274:21913–21919

    Article  PubMed  CAS  Google Scholar 

  23. Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    Article  PubMed  CAS  Google Scholar 

  24. Mitchell KJ, Pinton P, Varadi A, Tacchetti C, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA (2001) Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41–51

    Article  PubMed  CAS  Google Scholar 

  25. Schulla V, Renstrom E, Feil R, Feil S, Franklin I, Gjinovci A, Jing XJ, Laux D, Lundquist I, Magnuson MA, Obermuller S, Olofsson CS, Salehi A, Wendt A, Klugbauer N, Wollheim CB, Rorsman P, Hofmann F (2003) Impaired insulin secretion and glucose tolerance in beta cell-selective Ca(v)1.2 Ca2+ channel null mice. EMBO J 22:3844–3854

    Article  PubMed  CAS  Google Scholar 

  26. Hellman B, Idahl LA, Lernmark A, Sehlin J, Taljedal IB (1974) The pancreatic beta-cell recognition of insulin secretagogues. Effects of calcium and sodium on glucose metabolism and insulin release. Biochem J 138:33–45

    PubMed  CAS  Google Scholar 

  27. Donatsch P, Lowe DA, Richardson BP, Taylor P (1977) The functional significance of sodium channels in pancreatic beta-cell membranes. J Physiol 267:357–376

    PubMed  CAS  Google Scholar 

  28. de Miguel R, Tamagawa T, Schmeer W, Nenquin M, Henquin JC (1988) Effects of acute sodium omission on insulin release, ionic flux and membrane potential in mouse pancreatic B-cells. Biochim Biophys Acta 969:198–207

    Article  PubMed  Google Scholar 

  29. Pressel DM, Misler S (1990) Sodium channels contribute to action potential generation in canine and human pancreatic islet B cells. J Membr Biol 1990 116:273–280

    Article  PubMed  CAS  Google Scholar 

  30. Hattori M, Kai R, Kitasato H (1994) Effects of lowering external Na+ concentration on cytoplasmic pH and Ca2+ concentration in mouse pancreatic beta-cells: mechanism of periodicity of spike-bursts. Jpn J Physiol 44:283–293

    Article  PubMed  CAS  Google Scholar 

  31. Kitasato H, Kai R, Ding WG, Omatsu-Kanbe M (1996) The intrinsic rhythmicity of spike-burst generation in pancreatic beta cells and intercellular interaction within an islet. Jpn J Physiol 46:363–373

    Article  PubMed  CAS  Google Scholar 

  32. Barnett DW, Pressel DM, Misler S (1995) Voltage-dependent Na+ and Ca2+ currents in human pancreatic islet beta cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch 431:272–282

    Article  PubMed  CAS  Google Scholar 

  33. Philipson LH, Kusnetsov A, Larson T, Zeng Y, Westermark G (1993) Human, rodent, and canine pancreatic beta-cells express a sodium channel alpha 1-subunit related to a fetal brain isoform. Diabetes 42:1372–1377

    Article  PubMed  CAS  Google Scholar 

  34. Tabcharani JA, Misler S (1989) Ca2+-activated K+ channel in rat pancreatic islet B cells: permeation, gating and blockade by cations. Biochim Biophys Acta 982:62–72

    Article  PubMed  CAS  Google Scholar 

  35. Gopel SO, Kanno T, Barg S, Eliasson L, Galvanovskis J, Renstrom E, Rorsman P (1999) Activation of Ca2+-dependent K+ channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 114:759–770

    Article  PubMed  CAS  Google Scholar 

  36. Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J, Philipson LH (2003) Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 52:2000–2006

    Article  PubMed  CAS  Google Scholar 

  37. Ferrer J, Wasson J, Salkoff L, Permutt MA (1996) Cloning of human pancreatic islet large conductance Ca2+-activated K+ channel (hSlo) cDNAs: evidence for high levels of expression in pancreatic islets and identification of a flanking genetic marker. Diabetologia 39:891–898

    PubMed  CAS  Google Scholar 

  38. Atwater I, Ribalet B, Rojas E (1979) Mouse pancreatic beta cells: tetraethylammonium blockage of the potassium permeability increase induced by depolarization. J Physiol 288:561–574

    PubMed  CAS  Google Scholar 

  39. Kukuljan M, Goncalves AA, Atwater I (1991) Charybdotoxin-sensitive K(Ca) channel is not involved in glucose-induced electrical activity in pancreatic beta-cells. J Membr Biol 119:187–195

    Article  PubMed  CAS  Google Scholar 

  40. Henquin JC (1990) Role of voltage-and Ca2+-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells. Pflugers Arch 416:568–572

    Article  PubMed  CAS  Google Scholar 

  41. MacDonald PE, Sewing S, Wang J, Joseph JW, Smukler SR, Sakellaropoulos G, Wang J, Saleh MC, Chan CB, Tsushima RG, Salapatek AM, Wheeler MB (2002) Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucosedependent insulin secretion. J Biol Chem 277:44938–44945

    Article  PubMed  CAS  Google Scholar 

  42. Lebrun P, Atwater I, Claret M, Malaisse WJ, Herchuelz A (1983) Resistance to apamin of the Ca2+-activated K+ permeability in pancreatic B-cells. FEBS Lett 161:41–44

    Article  PubMed  CAS  Google Scholar 

  43. Atwater I, Ribalet B, Rojas E (1978) Cyclic changes in potential and resistance of the beta-cell membrane induced by glucose in islets of Langerhans from mouse. J Physiol 278:117–139

    PubMed  CAS  Google Scholar 

  44. Henquin JC, Meissner HP, Preissler M (1979) 9-Aminoacridine-and tetraethylam-monium-induced reduction of the potassium permeability in pancreatic B-cells. Effects on insulin release and electrical properties. Biochim Biophys Acta 587: 579–592

    PubMed  CAS  Google Scholar 

  45. Kozak JA, Misler S, Logothetis DE (1998) Characterization of a Ca2+-activated K+ current in insulin-secreting murine betaTC-3 cells. J Physiol 509:355–370

    Article  PubMed  CAS  Google Scholar 

  46. Zhang M, Houamed K, Kupershmidt S, Roden D, Satin LS (2005) Pharmacological properties and functional role of Kslow current in mouse pancreatic beta-cells: SK channels contribute to Kslow tail current and modulate insulin secretion. J Gen Physiol 126:353–363

    Article  PubMed  CAS  Google Scholar 

  47. Dukes ID, Philipson LH (1996) K+ channels: generating excitement in pancreatic beta cells. Diabetes 45:845–853

    Article  PubMed  CAS  Google Scholar 

  48. Yan L, Figueroa DJ, Austin CP, Liu Y, Bugianesi RM, Slaughter RS, Kaczorowski GJ, Kohler MG (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53:597–607

    Article  PubMed  CAS  Google Scholar 

  49. Covarrubias M, Wei A, Salkoff L (1991) Shaker, Shal, Shab, and Shaw express independent K+ current systems Neuron 7:763–773

    Article  PubMed  CAS  Google Scholar 

  50. Lee TE, Philipson LH, Kuznetsov A, Nelson DJ (1994) Structural determinant for assembly of mammalian K+ channels. Biophys J 66:667–673

    PubMed  CAS  Google Scholar 

  51. Hugnot JP, Salinas M, Lesage F, Guillemare E, de Weille J, Heurteaux C, Mattei MG, Lazdunski M (1996) Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J 15:3322–3331

    PubMed  CAS  Google Scholar 

  52. Post MA, Kirsch GE, Brown AM (1996) Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and express a novel current. FEBS Lett 399:177–182

    Article  PubMed  CAS  Google Scholar 

  53. Betsholtz C, Baumann A, Kenna S, Ashcroft FM, Ashcroft SJH, Berggren P, Grupe A, Pongs O, Rorsman P, Sandblom J, Welsh M (1990) Expression of voltage-gated K+ channels in insulin-producing cells. FEBS Lett 263:121–126

    Article  PubMed  CAS  Google Scholar 

  54. Baumann A, Krah-Jentgers I, Muller R, Muller-Holtkamp F (1987) Molecular organization of the maternal effect region of Drosophila: characterization of an IA channel with homology to vertebrate Na channel. EMBO J 6:3419–3429

    PubMed  CAS  Google Scholar 

  55. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and cDNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753

    Article  PubMed  CAS  Google Scholar 

  56. Philipson L, Hice RE, Schaefer K, LaMendola J, Bell GI, Nelson DJ, Steiner DF (1991) Sequence and functional expression in Xenopus oocytes of a human insulinoma and islet potassium channel. Proc Natl Acad Sci USA 88:53–57

    Article  PubMed  CAS  Google Scholar 

  57. Philipson LH, Rosenberg MP, Kuznetsov A, Lancaster ME, Worley JF III, Roe MW, Dukes ID (1994) Delayed rectifier K+ channel overexpression in transgenic islets and beta-cells associated with impaired glucose responsiveness. J Biol Chem 269: 27787–27790

    PubMed  CAS  Google Scholar 

  58. Philipson LH (1999) Beta-cell ion channels: keys to endodermal excitability. Horm Metab Res 31:455–461

    PubMed  CAS  Google Scholar 

  59. Roe MW, Worley JF III, Mittal AA, Kuznetsov A, DasGupta S, Mertz RJ, Witherspoon SM III, Blair N, Lancaster ME, McIntyre MS, Shehee R, Dukes ID, Philipson LH (1996) Expression and function of pancreatic beta-cell delayed rectifier K+ channels: role in stimulus-secretion coupling. J Biol Chem 271:32241–32246

    Article  PubMed  CAS  Google Scholar 

  60. MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AM, Backx PH, Wheeler MB (2001) Members of the Kv1 and Kv2 voltage-dependent K+ channel families regulate insulin secretion. Mol Endocrinol 15:1423–1435

    Article  PubMed  CAS  Google Scholar 

  61. MacDonald PE, Wang G, Tsuk S, Dodo C, Kang Y, Tang L, Wheeler MB, Cattral MS, Lakey JR, Salapatek AM, Lotan I, Gaisano HY (2002) Synaptosome-associated protein of 25 kilodaltons modulates Kv2.1 voltage-dependent K+ channels in neuroendocrine islet beta cells through an interaction with the channel N terminus. Mol Endocrinol 16:2452–2461

    Article  PubMed  CAS  Google Scholar 

  62. Herrington J, Sanchez M, Wunderler D, Yan L, Bugianesi RM, Dick IE, Clark SA, Brochu RM, Priest BT, Kohler MG, McManus OB (2005) Biophysical and pharmacological properties of the voltage-gated potassium current of human pancreatic beta-cells. J Physiol 567 Pt 1:159–175

    Article  PubMed  CAS  Google Scholar 

  63. Tamarina NA, Kuznetsov A, Fridlyand LE, Philipson LH (2005) Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling. Am J Physiol Endocrinol Metab 289:578–585

    Article  CAS  Google Scholar 

  64. Herrington J, Zhou YP, Bugianesi RM, Dulski PM, Feng Y, Warren VA, Smith MM, Kohler MG, Garsky VM, Sanchez M, Wagner M, Raphaelli K, Banerjee P, Ahaghotu C, Wunderler D, Priest BT, Mehl JT, Garcia ML, McManus OB, Kaczorowski GJ, Slaughter RS (2006) Blockers of the delayed-rectifier potassium current in pancreatic beta-cells enhance glucose-dependent insulin secretion. Diabetes 55:1034–1042

    Article  PubMed  CAS  Google Scholar 

  65. MacDonald PE, Sewing S, Wang J, Joseph JW, Smukler SR, Sakellaropoulos G, Wang J, Saleh MC, Chan CB, Tsushima RG, Salapatek AM, Wheeler MB (2002) Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion. J Biol Chem 277:44938–44945

    Article  PubMed  CAS  Google Scholar 

  66. MacDonald PE, Salapatek AM, Wheeler MB (2002) Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K+ currents in beta cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 51:S443–S447

    Article  PubMed  CAS  Google Scholar 

  67. Misonou H, Mohapatra DP, Park EW, Leung V, Zhen D, Misonou K, Anderson AE, Trimmer JS (2004) Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci 7:711–718

    Article  PubMed  CAS  Google Scholar 

  68. McKay MC, Worley JF 3rd (2001) Linoleic acid both enhances activation and blocks Kv1.5 and Kv2.1 channels by two separate mechanisms. Am J Physiol Cell Physiol 281: C1277–C1284

    PubMed  CAS  Google Scholar 

  69. Feng DD, Luo Z, Roh SG, Hernandez M, Tawadros N, Keating DJ, Chen C (2006) Reduction in voltage-gated K+ currents in primary cultured rat pancreatic beta cells by linoleic acids. Endocrinology 147:674–682

    Article  PubMed  CAS  Google Scholar 

  70. Jacobson DA, Weber CR, Bao S, Turk J, Philipson LH (2007) Modulation of the pancreatic islet beta cell delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J Biol Chem 282:7442–7449

    Article  PubMed  CAS  Google Scholar 

  71. Wolf BA, Pasquale SM, Turk J (1991) Free fatty acid accumulation in secretagogue-stimulated pancreatic islets and effects of arachidonate on depolarization-induced insulin secretion. Biochemistry 30:6372–6379

    Article  PubMed  CAS  Google Scholar 

  72. Sakura H, Ashcroft FM (1997) Identification of four trp1 gene variants murine pancreatic beta cells. Diabetologia 40:528–532

    Article  PubMed  CAS  Google Scholar 

  73. Roe MW, Worley JF 3rd, Qian F, Tamarina N, Mittal AA, Dralyuk F, Blair NT, Mertz RJ, Philipson LH, Dukes ID (1998) Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenically derived beta-cells. J Biol Chem 273:10402–10410

    Article  PubMed  CAS  Google Scholar 

  74. Qian F, Huang P, Ma L, Kuznetsov A, Tamarina N, Philipson LH (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51Suppl 1:S183–S189

    Article  PubMed  CAS  Google Scholar 

  75. Inamura K, Sano Y, Mochizuki S, Yokoi H, Miyake A, Nozawa K, Kitada C, Matsushime H, Furuichi K (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201–207

    Article  PubMed  CAS  Google Scholar 

  76. Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100:15166–15171

    Article  PubMed  CAS  Google Scholar 

  77. Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic beta cells. Cell Calcium 41:51–61

    Article  PubMed  CAS  Google Scholar 

  78. Akiba Y, Kato S, Katsube K, Nakamura M, Takeuchi K, Ishii H, Hibi T (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321:219–225

    Article  PubMed  CAS  Google Scholar 

  79. Sturgess NC, Carrington CA, Hales CN, Ashford ML (1987) Calcium and ATP regulate the activity of a non-selective cation channel in a rat insulinoma cell line. Pflugers Arch 409:607–615

    Article  PubMed  CAS  Google Scholar 

  80. Sturgess NC, Carrington CA, Hales CN, Ashford ML (1987) Nucleotide-sensitive ion channels in human insulin producing tumour cells. Pflugers Arch 410:169–172

    Article  PubMed  CAS  Google Scholar 

  81. Herson PS, Ashford ML (1997) Activation of a novel non-selective cation channel by alloxan and H2O2 in the rat insulin-secreting cell line CRI-G1. J Physiol 501: 59–66

    Article  PubMed  CAS  Google Scholar 

  82. Herson PS, Lee K, Pinnock RD, Hughes J, Ashford ML (1999) Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line. J Biol Chem 274:833–841

    Article  PubMed  CAS  Google Scholar 

  83. Karlsson S, Scheurink AJ, Steffens AB, Ahren B (1994) Involvement of capsaicin-sensitive nerves in regulation of insulin secretion and glucose tolerance in conscious mice. Am J Physiol 267:R1071–R1077

    PubMed  CAS  Google Scholar 

  84. Carlsson PO, Sandler S, Jansson L (1996) Influence of the neurotoxin capsaicin on rat pancreatic islets in culture, and on the pancreatic islet blood flow of rats. Eur J Pharmacol 312:75–81

    Article  PubMed  CAS  Google Scholar 

  85. Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J, Tsui H, Tang L, Tsai S, Santamaria P, Driver JP, Serreze D, Salter MW, Dosch HM (2006) TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127:1123–1135

    Article  PubMed  CAS  Google Scholar 

  86. Gram DX, Ahren B, Nagy I, Olsen UB, Brand CL, Sundler F, Tabanera R, Svendsen O, Carr RD, Santha P, Wierup N, Hansen AJ (2007) Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci 25: 213–223

    Article  PubMed  Google Scholar 

  87. Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, Thevenod F, Renstrom E (2001) Priming of insulin granules for exocytosis by granular Cl− uptake and acidification. J Cell Sci 114:2145–2154

    PubMed  CAS  Google Scholar 

  88. Stalvey MS, Muller C, Schatz DA, Wasserfall CH, Campbell-Thompson ML, Theriaque DW, Flotte TR, Atkinson MA (2006) Cystic fibrosis transmembrane conductance regulator deficiency exacerbates islet cell dysfunction after beta-cell injury. Diabetes 55:1939–1945

    Article  PubMed  CAS  Google Scholar 

  89. Rorsman P, Berggren PO, Bokvist K, Ericson H, Mohler H, Ostenson CG, Smith PA (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341:233–236

    Article  PubMed  CAS  Google Scholar 

  90. Gonoi T, Mizuno N, Inagaki N, Kuromi H, Seino Y, Miyazaki J, Seino S (1994) Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J Biol Chem 269:16989–16992

    PubMed  CAS  Google Scholar 

  91. Inagaki N, Kuromi H, Gonoi T, Okamoto Y, Ishida H, Seino Y, Kaneko T, Iwanaga T, Seino S (1996) Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J 9:686–691

    Google Scholar 

  92. Wang CZ, Namba N, Gonoi T, Inagaki N, Seino S (1996) Cloning and pharmacological characterization of a fourth P2X receptor subtype widely expressed in brain and peripheral tissues including various endocrine tissues. Biochem Biophys Res Commun 220:196–202

    Article  PubMed  CAS  Google Scholar 

  93. Poulsen CR, Bokvist K, Olsen HL, Hoy M, Capito K, Gilon P, Gromada J (1999) Multiple sites of purinergic control of insulin secretion in mouse pancreatic beta-cells. Diabetes 48:2171–2181

    Article  PubMed  CAS  Google Scholar 

  94. Gopel SO, Kanno T, Barg S, Rorsman P (2000) Patch-clamp characterisation of somatostatin-secreting cells in intact mouse pancreatic islets. J Physiol 528:497–507

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Jacobson, D.A., Philipson, L.H. (2008). Ion Channels and Insulin Secretion. In: Seino, S., Bell, G.I. (eds) Pancreatic Beta Cell in Health and Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-75452-7_6

Download citation

Publish with us

Policies and ethics