Mechanisms of Beta-Cell Death in Diabetes

  • Marc Y. Donath
  • Jan A. Ehses


A decrease in both mass and secretory function of insulin producing beta cells contribute to the pathophysiology of type 1 and type 2 diabetes. In this chapter, we review the evidence that glucose, inflammation, dyslipidemia, leptin, autoimmunity, amyloid and some sulfonylureas may contribute to the maladaptation of beta cells. With respect to these causal factors, we focus on IL-1beta, Fas, IRS-2, oxidative stress, NF-kappaB, ER stress, mitochondrial dysfunction, and the KATP-channel as potential mechanisms of action. Interestingly, most of these factors are involved in inflammatory processes in addition to playing a role in both the regulation of beta-cell secretory function and cell turnover. To this end, we believe the mechanisms regulating beta-cell proliferation, apoptosis and function are inseparable processes.


Insulin Secretion Beta Cell Endoplasmic Reticulum Stress Human Islet Human Pancreatic Islet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRefGoogle Scholar
  2. 2.
    Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45:85–96PubMedCrossRefGoogle Scholar
  3. 3.
    Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, Yoo SJ, Kang MI, Cha BY, Lee KW, Son HY, Kang SK, Kim HS, Lee IK, Bonner-Weir S (2003) Selective beta-cell loss and alpha-cell expansion in patients with Type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 88:2300–2308PubMedCrossRefGoogle Scholar
  4. 4.
    Hypponen E, Virtanen SM, Kenward MG, Knip M, Akerblom HK (2000) Obesity, increased linear growth, and risk of type 1 diabetes in children. Diabetes Care 23:1755–1760PubMedCrossRefGoogle Scholar
  5. 5.
    Fourlanos S, Narendran P, Byrnes GB, Colman PG, Harrison LC (2004) Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 47: 1661–1667PubMedCrossRefGoogle Scholar
  6. 6.
    Donath MY, Storling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med 81:455–470PubMedCrossRefGoogle Scholar
  7. 7.
    Donath MY, Halban PA (2004) Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47:581–589PubMedCrossRefGoogle Scholar
  8. 8.
    Donath MY, Ehses JA (2006) Type 1, type 1.5, and type 2 diabetes: NOD the diabetes we thought it was. Proc Natl Acad Sci USA 103:12217–12218PubMedCrossRefGoogle Scholar
  9. 9.
    Chick WL, Like AA (1970) Studies in the diabetic mutant mouse. 3. Physiological factors associated with alterations in beta cell proliferation. Diabetologia 6:243–251PubMedCrossRefGoogle Scholar
  10. 10.
    Donath MY, Gross DJ, Cerasi E, Kaiser N (1999) Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 48:738–744PubMedCrossRefGoogle Scholar
  11. 11.
    Maedler K, Spinas GA, Lehmann R, Sergeev P, Weber M, Fontana A, Kaiser N, Donath MY (2001) Glucose induces beta-cell apoptosis via upregulation of the Fas-receptor in human islets. Diabetes 50:1683–1690PubMedCrossRefGoogle Scholar
  12. 12.
    Efanova IB, Zaitsev SV, Zhivotovsky B, Kohler M, Efendic S, Orrenius S, Berggren PO (1998) Glucose and tolbutamide induce apoptosis in pancreatic beta cells. A process dependent on intracellular Ca2+ concentration. J Biol Chem. 273:33501–33507PubMedCrossRefGoogle Scholar
  13. 13.
    Hoorens A, Van dC, Kloppel G, Pipeleers D (1996) Glucose promotes survival of rat pancreatic beta cells by activating synthesis of proteins which suppress a constitutive apoptotic program. J Clin Invest 98:1568–1574PubMedCrossRefGoogle Scholar
  14. 14.
    Federici M, Hribal M, Perego L, Ranalli M, Caradonna Z, Perego C, Usellini L, Nano R, Bonini P, Bertuzzi F, Marlier LN, Davalli AM, Carandente O, Pontiroli AE, Melino G, Marchetti P, Lauro R, Sesti G, Folli F (2001) High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50: 1290–1301PubMedCrossRefGoogle Scholar
  15. 15.
    Weir GC, Bonner-Weir S (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53Suppl 3:S16–21PubMedCrossRefGoogle Scholar
  16. 16.
    Xu G, Stoffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both betacell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270–2276PubMedCrossRefGoogle Scholar
  17. 17.
    Maedler K, Fontana A, Ris F, Sergeev P, Toso C, Oberholzer J, Lehmann R, Bachmann F, Tasinato A, Spinas GA, Halban PA, Donath MY (2002) FLIP switches Fas-mediated glucose signaling in human pancreatic beta cells from apoptosis to cell replication. Proc Natl Acad Sci USA 99:8236–8241PubMedCrossRefGoogle Scholar
  18. 18.
    Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY (2003) Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes 52:726–733PubMedCrossRefGoogle Scholar
  19. 19.
    Maedler K, Sergeev P, Ehses JA, Mathe Z, Bosco D, Berney T, Dayer JM, Reinecke M, Halban PA, Donath MY (2004) Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-1beta in human islets. Proc Natl Acad Sci USA 101: 8138–8143PubMedCrossRefGoogle Scholar
  20. 20.
    Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY (2002) Glucose-induced beta-cell production of interleukin-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110: 851–860PubMedGoogle Scholar
  21. 21.
    Bonner-Weir S (2000) Islet growth and development in the adult. J Mol Endocrinol 24:297–302PubMedCrossRefGoogle Scholar
  22. 22.
    Laybutt DR, Glandt M, Xu G, Ahn YB, Trivedi N, Bonner-Weir S, Weir GC (2003) Critical reduction in beta-cell mass results in two distinct outcomes over time. Adaptation with impaired glucose tolerance or decompensated diabetes. J Biol Chem 278: 2997–3005PubMedCrossRefGoogle Scholar
  23. 23.
    Maedler K, Schumann DM, Sauter N, Ellingsgaard H, Bosco D, Baertschiger R, Iwakura Y, Oberholzer J, Wollheim CB, Gauthier BR, Donath MY (2006) Low concentration of interleukin-1β induces FLICE-inhibitory protein-mediated β-cell proliferation in human pancreatic islets. Diabetes 55:2713–272PubMedCrossRefGoogle Scholar
  24. 24.
    Weir GC, Clore ET, Zmachinski CJ, Bonner-Weir S (1981) Islet secretion in a new experimental model for non-insulin-dependent diabetes. Diabetes 30:590–595PubMedCrossRefGoogle Scholar
  25. 25.
    Unger RH, Grundy S (1985) Hyperglycaemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance: implications for the management of diabetes. Diabetologia 28:119–121PubMedCrossRefGoogle Scholar
  26. 26.
    Robertson RP (1989) Type II diabetes, glucose “non-sense,” and islet desensitization. Diabetes 38:1501–1505PubMedCrossRefGoogle Scholar
  27. 27.
    Schumann DM, Maedler K, Franklin I, Ehses JA, Ellingsgaard H, Gjinovci A, Kurrer MO, Gauthier BR, Iwakura Y, Chervonsky AV, Wollheim CB, Donath MY (2007) The Fas pathway is involved in beta-cell secretory function. Proc Natl Acad Sci USA 104:2861–2866PubMedCrossRefGoogle Scholar
  28. 28.
    Leahy JL, Cooper HE, Deal DA, Weir GC (1986) Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions. J Clin Invest 77:908–915PubMedCrossRefGoogle Scholar
  29. 29.
    Leahy JL, Weir GC (1988) Evolution of abnormal insulin secretory responses during 48-h in vivo hyperglycemia. Diabetes 37:217–222PubMedCrossRefGoogle Scholar
  30. 30.
    Arnush M, Heitmeier MR, Scarim AL, Marino MH, Manning PT, Corbett JA (1998) IL-1 produced and released endogenously within human islets inhibits beta cell function. J Clin Invest 102:516–526PubMedCrossRefGoogle Scholar
  31. 31.
    Frigerio S, Junt T, Lu B, Gerard C, Zumsteg U, Hollander GA, Piali L (2002) Beta cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nat Med 8:1414–1420PubMedCrossRefGoogle Scholar
  32. 32.
    Busch AK, Cordery D, Denyer GS, Biden TJ (2002) Expression profiling of palmitate-and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic beta-cell function. Diabetes 51:977–987PubMedCrossRefGoogle Scholar
  33. 33.
    Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, Gueripel X, Ellingsgaard H, Schneider MK, Biollaz G, Fontana A, Reinecke M, Homo-Delarche F, Donath MY (2007) Increased number of islet associated macrophages in type 2 diabetes. Diabetes 56:2356–2370PubMedCrossRefGoogle Scholar
  34. 34.
    Maedler K, Schumann DM, Sauter N, Ellingsgaard H, Bosco D, Baertschiger R, Iwakura Y, Oberholzer J, Wollheim CB, Gauthier BR, Donath MY (2006) Low concentration of IL-1beta induces FLIP-mediated beta-cell proliferation in human pancreatic islets. Diabetes 55:2713–2722PubMedCrossRefGoogle Scholar
  35. 35.
    Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119PubMedCrossRefGoogle Scholar
  36. 36.
    Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526PubMedCrossRefGoogle Scholar
  37. 37.
    Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY (2001) Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 50:69–76PubMedCrossRefGoogle Scholar
  38. 38.
    Dyntar D, Eppenberger-Eberhardt M, Maedler K, Pruschy M, Eppenberger HM, Spinas GA, Donath MY (2001) Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 50:2105–2113PubMedCrossRefGoogle Scholar
  39. 39.
    Cnop M, Hannaert JC, Grupping AY, Pipeleers DG (2002) Low density lipoprotein can cause death of islet beta cells by its cellular uptake and oxidative modification. Endocrinology 143:3449–3453PubMedCrossRefGoogle Scholar
  40. 40.
    Roehrich ME, Mooser V, Lenain V, Herz J, Nimpf J, Azhar S, Bideau M, Capponi A, Nicod P, Haefliger JA, Waeber G (2003) Insulin-secreting beta-cell dysfunction induced by human lipoproteins. J Biol Chem 278:18368–18375PubMedCrossRefGoogle Scholar
  41. 41.
    El-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, Joly E, Dbaibo G, Rosenberg L, Prentki M (2003) Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 144:4154–4163PubMedCrossRefGoogle Scholar
  42. 42.
    Poitout V, Robertson RP (2002) Minireview: Secondary beta-cell failure in type 2 diabetes-a convergence of glucotoxicity and lipotoxicity. Endocrinology 143:339–342PubMedCrossRefGoogle Scholar
  43. 43.
    Otero M, Lago R, Lago F, Casanueva FF, Dieguez C, Gomez-Reino JJ, Gualillo O (2005) Leptin, from fat to inflammation: old questions and new insights. FEBS Lett 579: 295–301PubMedCrossRefGoogle Scholar
  44. 44.
    Matarese G, Sanna V, Lechler RI, Sarvetnick N, Fontana S, Zappacosta S, La Cava A (2002) Leptin accelerates autoimmune diabetes in female NOD mice. Diabetes 51: 1356–1361PubMedCrossRefGoogle Scholar
  45. 45.
    Barbier M, Cherbut C, Aube AC, Blottiere HM, Galmiche JP (1998) Elevated plasma leptin concentrations in early stages of experimental intestinal inflammation in rats. Gut 43:783–790PubMedCrossRefGoogle Scholar
  46. 46.
    Sanna V, Di Giacomo A, La Cava A, Lechler RI, Fontana S, Zappacosta S, Matarese G (2003) Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J Clin Invest 111:241–250PubMedGoogle Scholar
  47. 47.
    Kieffer TJ, Habener JF (2000) The adipoinsular axis: effects of leptin on pancreatic beta cells. Am J Physiol Endocrinol Metab 278:E1–E14PubMedGoogle Scholar
  48. 48.
    Roduit R, Thorens B (1997) Inhibition of glucose-induced insulin secretion by longterm preexposure of pancreatic islets to leptin. FEBS Lett 415:179–182PubMedCrossRefGoogle Scholar
  49. 49.
    Hennige AM, Burks DJ, Ozcan U, Kulkarni RN, Ye J, Park S, Schubert M, Fisher TL, Dow MA, Leshan R, Zakaria M, Mossa-Basha M, White MF (2003) Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 112:1521–1532PubMedGoogle Scholar
  50. 50.
    Rhodes CJ (2005) Type 2 diabetes—a matter of beta-cell life and death? Science 307:380–384PubMedCrossRefGoogle Scholar
  51. 51.
    Kwon G, Corbett JA, Rodi CP, Sullivan P, McDaniel ML (1995) Interleukin-1 betainduced nitric oxide synthase expression by rat pancreatic beta cells: evidence for the involvement of nuclear factor kappa B in the signaling mechanism. Endocrinology 136:4790–4795PubMedCrossRefGoogle Scholar
  52. 52.
    Zeender E, Maedler K, Bosco D, Berney T, Donath MY, Halban PA (2004) Pioglitazone and sodium salicylate protect human beta cells against apoptosis and impaired function induced by glucose and interleukin-1beta. J Clin Endocrinol Metab 89: 5059–5066PubMedCrossRefGoogle Scholar
  53. 53.
    Giannoukakis N, Rudert WA, Trucco M, Robbins PD (2000) Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an Ikappa B repressor. J Biol Chem 275:36509–36513PubMedCrossRefGoogle Scholar
  54. 54.
    Shoelson SE, Lee J, Yuan M (2003) Inflammation and the IKK beta/I kappa B/NFkappa B axis in obesity-and diet-induced insulin resistance. Int J Obes Relat Metab Disord 27Suppl 3:S49–52PubMedCrossRefGoogle Scholar
  55. 55.
    Shoelson S (2002) Invited comment on W. Ebstein: on the therapy of diabetes mellitus, in particular on the application of sodium salicylate. J Mol Med 80:618–619CrossRefGoogle Scholar
  56. 56.
    Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NFkappaB. Nat Med 11:183–190PubMedCrossRefGoogle Scholar
  57. 57.
    Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198PubMedCrossRefGoogle Scholar
  58. 58.
    Rakatzi I, Mueller H, Ritzeler O, Tennagels N, Eckel J (2004) Adiponectin counteracts cytokine-and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1. Diabetologia 47:249–258PubMedCrossRefGoogle Scholar
  59. 59.
    Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stressactivated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622PubMedCrossRefGoogle Scholar
  60. 60.
    Norlin S, Ahlgren U, Edlund H (2005) Nuclear factor-κB activity in β-cells is required for glucose-stimulated insulin secretion. Diabetes 54:125–132PubMedCrossRefGoogle Scholar
  61. 61.
    Izumi T, Yokota-Hashimoto H, Zhao S, Wang J, Halban PA, Takeuchi T (2003) Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52:409–416PubMedCrossRefGoogle Scholar
  62. 62.
    Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51Suppl 3:S455–461PubMedCrossRefGoogle Scholar
  63. 63.
    Araki E, Oyadomari S, Mori M (2003) Endoplasmic reticulum stress and diabetes mellitus. Intern Med 42:7–14PubMedCrossRefGoogle Scholar
  64. 64.
    Weber SM, Chambers KT, Bensch KG, Scarim AL, Corbett JA (2004) PPARgamma ligands induce ER stress in pancreatic beta cells: ER stress activation results in attenuation of cytokine signaling. Am J Physiol Endocrinol Metab 287:E1171–1177PubMedCrossRefGoogle Scholar
  65. 65.
    Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRefGoogle Scholar
  66. 66.
    Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140PubMedCrossRefGoogle Scholar
  67. 67.
    Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387PubMedCrossRefGoogle Scholar
  68. 68.
    Brissova M, Shiota M, Nicholson WE, Gannon M, Knobel SM, Piston DW, Wright CV, Powers AC (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucosestimulated insulin secretion. J Biol Chem 277:11225–11232PubMedCrossRefGoogle Scholar
  69. 69.
    Gauthier BR, Brun T, Sarret EJ, Ishihara H, Schaad O, Descombes P, Wollheim CB (2004) Oligonucleotide microarray analysis reveals PDX1 as an essential regulator of mitochondrial metabolism in rat islets. J Biol Chem 279:31121–31130PubMedCrossRefGoogle Scholar
  70. 70.
    Lameloise N, Muzzin P, Prentki M, Assimacopoulos-Jeannet F (2001) Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes 50:803–809PubMedCrossRefGoogle Scholar
  71. 71.
    Kulkarni RN, Jhala US, Winnay JN, Krajewski S, Montminy M, Kahn CR (2004) PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J Clin Invest 114:828–836PubMedGoogle Scholar
  72. 72.
    Johnson JD, Ahmed NT, Luciani DS, Han Z, Tran H, Fujita J, Misler S, Edlund H, Polonsky KS (2003) Increased islet apoptosis in Pdx1+/− mice. J Clin Invest 111: 1147–1160PubMedGoogle Scholar
  73. 73.
    Robertson RP, Harmon J, Tran PO, Poitout V (2004) Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53Suppl 1: S119–124PubMedCrossRefGoogle Scholar
  74. 74.
    Green K, Brand MD, Murphy MP (2004) Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 53Suppl 1:S110–118PubMedCrossRefGoogle Scholar
  75. 75.
    Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52:1–8PubMedCrossRefGoogle Scholar
  76. 76.
    Iwakura T, Fujimoto S, Kagimoto S, Inada A, Kubota A, Someya Y, Ihara Y, Yamada Y, Seino Y (2000) Sustained enhancement of Ca(2+) influx by glibenclamide induces apoptosis in RINm5F cells. Biochem Biophys Res Commun 271:422–428PubMedCrossRefGoogle Scholar
  77. 77.
    Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY (2005) Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 90:501–506PubMedCrossRefGoogle Scholar
  78. 78.
    Del Guerra S, Marselli L, Lupi R, Boggi U, Mosca F, Benzi L, Del Prato S, Marchetti P (2005) Effects of prolonged in vitro exposure to sulphonylureas on the function and survival of human islets. J Diabetes Complications 19:60–64PubMedCrossRefGoogle Scholar
  79. 79.
    Alvarsson M, Sundkvist G, Lager I, Henricsson M, Berntorp K, Fernqvist-Forbes E, Steen L, Westermark G, Westermark P, Orn T, Grill V (2003) Beneficial effects of insulin versus sulphonylurea on insulin secretion and metabolic control in recently diagnosed type 2 diabetic patients. Diabetes Care 26:2231–2237PubMedCrossRefGoogle Scholar
  80. 80.
    U K. prospective diabetes study 16 (1995) Overview of 6 years’ therapy of type II diabetes: a progressive disease. U K. Prospective Diabetes Study Group. Diabetes 44:1249–1258CrossRefGoogle Scholar
  81. 81.
    Maedler K, Storling J, Sturis J, Zuellig RA, Spinas GA, Arkhammar PO, Mandrup-Poulsen T, Donath MY (2004) Glucose-and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulphonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets. Diabetes 53: 1706–1713PubMedCrossRefGoogle Scholar
  82. 82.
    Ritzel RA, Hansen JB, Veldhuis JD, Butler PC (2004) Induction of beta-cell rest by a Kir6.2/SUR1-selective K(ATP)-channel opener preserves beta-cell insulin stores and insulin secretion in human islets cultured at high (11 mM) glucose. J Clin Endocrinol Metab 89:795–805PubMedCrossRefGoogle Scholar
  83. 83.
    Greenwood RH, Mahler RF, Hales CN (1976) Improvement in insulin secretion in diabetes after diazoxide. Lancet 1:444–447PubMedCrossRefGoogle Scholar
  84. 84.
    Bjork E, Berne C, Kampe O, Wibell L, Oskarsson P, Karlsson FA (1996) Diazoxide treatment at onset preserves residual insulin secretion in adults with autoimmune diabetes. Diabetes 45:1427–1430PubMedCrossRefGoogle Scholar
  85. 85.
    Guldstrand M, Grill V, Bjorklund A, Lins PE, Adamson U (2002) Improved beta cell function after short-term treatment with diazoxide in obese subjects with type 2 diabetes. Diabetes Metab 28:448–456PubMedGoogle Scholar
  86. 86.
    Drucker DJ (2003) Glucagon-like peptide-1 and the islet beta-cell: augmentation of cell proliferation and inhibition of apoptosis. Endocrinology 144:5145–5148PubMedCrossRefGoogle Scholar
  87. 87.
    Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ (2003) Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 278:471–478PubMedCrossRefGoogle Scholar
  88. 88.
    Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89:3629–3643PubMedCrossRefGoogle Scholar
  89. 89.
    Matveyenko AV, Butler PC (2006) Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. Ilar J 47:225–233PubMedGoogle Scholar
  90. 90.
    Mathis D, Vence L, Benoist C (2001) beta-Cell death during progression to diabetes. Nature 414:792–798PubMedCrossRefGoogle Scholar
  91. 91.
    Bellone M, Iezzi G, Rovere P, Galati G, Ronchetti A, Protti MP, Davoust J, Rugarli C, Manfredi AA (1997) Processing of engulfed apoptotic bodies yields T cell epitopes. J Immunol 159:5391–5399PubMedGoogle Scholar
  92. 92.
    Trudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT (2000) Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 49:1–7PubMedCrossRefGoogle Scholar
  93. 93.
    Donath MY, Ehses JA, Maedler K, Schumann DM, Ellingsgaard H, Eppler E, Reinecke M (2005) Mechanisms of β-cell death in type 2 diabetes. Diabetes 54Suppl 2: S108–113PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Marc Y. Donath
    • 1
  • Jan A. Ehses
    • 1
  1. 1.Clinic of Endocrinology and DiabetesUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations