Insulin is synthesized in the pancreatic beta cell via a series of precursor proteins which include preproinsulin and proinsulin. Preproinsulin carries additional information to target the nascent protein chain into the endoplasmic reticulum (ER) where, after cleavage of the signal peptide, it folds efficiently to assume the native proinsulin structure stabilized by three disulfide bonds. The beta-cell ER appears to be especially adapted to supporting these processes in the face of varying demands for the hormone. However, sustained high-level stimulation of insulin biosynthesis, as in diabetes, may result in beta-cell damage or death via ER stress mechanisms. Correctly folded proinsulin is transferred to the Golgi apparatus from which it is efficiently sorted into secretory vesicles of the regulated pathway, where it is converted to insulin and C-peptide. These peptides, along with others such as Islet Amyloid Polypeptide (IAPP/amylin) and various other granin family peptides, are all stored in highly organized mature secretory vesicles/granules, awaiting their regulated discharge into the bloodstream on demand. More information is needed on many aspects of insulin biosynthesis, particularly its regulatory mechanisms and the pathological processes that influence their function.


Beta Cell Endoplasmic Reticulum Stress Secretory Granule Trans Golgi Cisternal Network Islet Amyloid Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sanger F (1959) Chemistry of insulin. Science 129:1340–1344PubMedCrossRefGoogle Scholar
  2. 2.
    Steiner DF, Oyer PE (1967) The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc Natl Acad Sci USA 57:473–480PubMedCrossRefGoogle Scholar
  3. 3.
    Steiner DF (2001) The prohormone convertases and precursor processing in protein biosynthesis. In: Dalbey RE, Sigman DS (eds) The enzymes, vol. XXII. Academic Press, New York, pp 163–198Google Scholar
  4. 4.
    Halban PA (1991) Structural domains and molecular lifestyles of insulin and its precursors in the pancreatic beta cell. Diabetologia 34:767–778PubMedCrossRefGoogle Scholar
  5. 5.
    Egea PF, Stroud RM, Walter P (2005) Targeting proteins to membranes: structure of the signal recognition particle. Curr Opin Struct Biol 15:213–220PubMedCrossRefGoogle Scholar
  6. 6.
    Chan S, Keim P, Steiner D (1976) Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc Natl Acad Sci USA 73: 1964–1968PubMedCrossRefGoogle Scholar
  7. 7.
    Lomedico PT, Chan SJ, Steiner DF, Saunders GF (1977) Immunological and chemical characterization of bovine preproinsulin. J Biol Chem 252:7971–7978PubMedGoogle Scholar
  8. 8.
    Patzelt C, Labrecque A, Duguid J, Carroll R, Keim P, Heinrikson R, Steiner D (1978) Detection and kinetic behavior of preproinsulin in pancreatic islets. Proc Natl Acad Sci USA 75:1260–1264PubMedCrossRefGoogle Scholar
  9. 9.
    Huang XF, Arvan P (1995) Intracellular transport of proinsulin in pancreatic beta cells. J Biol Chem 270:20417–20423PubMedCrossRefGoogle Scholar
  10. 10.
    Munro S, Pelham HRB (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907PubMedCrossRefGoogle Scholar
  11. 11.
    Lodish HF (1988) Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi. J Biol Chem 263:2107–2110PubMedGoogle Scholar
  12. 12.
    Steiner DF, Kemmler W, Clark JL, Oyer PE, Rubenstein A (1972) The biosynthesis of insulin. In: Steiner DF, Freinkel N (eds) Handbook of physiology—Section 7 Endocrinology I. Williams & Wilkins, Baltimore, pp 175–198Google Scholar
  13. 13.
    Nishi M, Sanke T, Nagamatsu S, Bell GI, Steiner DF (1990) Islet amyloid polypeptide. A new beta cell secretory product related to islet amyloid deposits. J Biol Chem 265: 4173–4176PubMedGoogle Scholar
  14. 14.
    Steiner DF (1984) The biosynthesis of insulin: genetic, evolutionary and pathophysiologic aspects. In: Gotshlich EC (ed) The Harvey lectures series 78. Academic Press, New York, pp 191–228Google Scholar
  15. 15.
    Chance RE, Ellis RM, Bromer WW (1968) Porcine proinsulin: characterization and amino acid sequence. Science 161:165–167PubMedCrossRefGoogle Scholar
  16. 16.
    Nolan C, Margoliash E, Peterson JD, Steiner DF (1971) The structure of bovine proinsulin. J Biol Chem 246:2780–2795PubMedGoogle Scholar
  17. 17.
    Steiner D, Cho S, Oyer P, Terris S, Peterson J, and Rubenstein A (1971) Isolation and characterization of proinsulin C-peptide from bovine pancreas. J Biol Chem 246: 1365–1374PubMedGoogle Scholar
  18. 18.
    Kemmler W, Steiner DF, Borg J (1973) Studies on the conversion of proinsulin to insulin III Studies in vitro with a crude secretion granule fraction isolated from islets of Langerhans. J Biol Chem 248:4544–4551PubMedGoogle Scholar
  19. 19.
    Smit AB, Geraerts WPM, Meester I, van Heerikhuizen H, Joose J (1991) Characterization of a cDNA clone encoding molluscan insulin-related peptide II of lymnaea stagnalis. Eur J Biochem 199:699–703PubMedCrossRefGoogle Scholar
  20. 20.
    Kawakami A, Iwami M, Nagasawa H, Suzuki A, Ishizaki H (1989) Structure and organization of four clustered genes that encode bombyxin, as insulin-related brain secretory peptide of the silkmoth Bombyx mori. Proc Natl Acad Sci USA 86:6843–6847PubMedCrossRefGoogle Scholar
  21. 21.
    Frank BH, Veros AJ (1968) Physical studies on proinsulin: association behavior and conformation in solution. Biochem Biophys Res Commun 32:155–160PubMedCrossRefGoogle Scholar
  22. 22.
    Rubenstein AH, Mako M, Welbourne WP, Melani F, Steiner DF (1970) Comparative immunology of bovine, porcine, and human proinsulin and C-peptides. Diabetes 19: 546–553PubMedGoogle Scholar
  23. 23.
    Weiss MA, Frank BH, Khait I, Pekar A, Heiney R, Shoelson SE, Neuringer LJ (1990) NMR and photo-CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition. Biochemistry 29:8389–8401PubMedCrossRefGoogle Scholar
  24. 24.
    Frank BH, Veros AJ (1970) Interaction of zinc with proinsulin. Biochem Biophys Res Commun 38:284–289PubMedCrossRefGoogle Scholar
  25. 25.
    Steiner DF (1973) Cocrystallization of proinsulin and insulin. Nature 243:528–530PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor NA, Docherty K (1992) Sequence requirements for processing of proinsulin transfected mouse pituitary AtT20 cells. Biochem J 286:619–622PubMedGoogle Scholar
  27. 27.
    Gliemann J, Sorenson HH (1970) Assay of insulin-like activity by the isolated fat cell method: IV. The biological activity of proinsulin. Diabetologia 6:499–504PubMedCrossRefGoogle Scholar
  28. 28.
    Given BD, Cohen RM, Shoelson SE, Frank BH, Rubenstein AH, Tager HS (1985) Biochemical and clinical implications of proinsulin conversion intermediates. J Clin Invest 76:1398–1405PubMedCrossRefGoogle Scholar
  29. 29.
    Blundell T, Wood S (1982) The conformation, flexibility, and dynamics of polypeptide hormones. In: Snell EE, Boyer PD, Meister A, Richardson CC (eds) Annual review of biochemistry, vol. 51. Annual Reviews, Palo Alto, pp 123–154Google Scholar
  30. 30.
    Low BW, Fullerton WW, Rosen LS (1974) Insulin/proinsulin, a new crystalline complex. Nature 248:339–340PubMedCrossRefGoogle Scholar
  31. 31.
    Steiner DF, Clark JL, Nolan C, Rubenstein AH, Margoliash E, Aten B, Oyer PE (1969) Proinsulin and the biosynthesis of insulin. Rec Prog Horm Res 25:207–292PubMedGoogle Scholar
  32. 32.
    Sando H, Borg J, Steiner DF (1972) Studies on the secretion of newly synthesized proinsulin and insulin from isolated rat islets of Langerhans. J Clin Invest 51: 1476–1485PubMedCrossRefGoogle Scholar
  33. 33.
    Steiner DF, Cunningham DD, Spigelman L, Aten B (1967) Insulin biosynthesis: evidence for a precursor. Science 157:697–700PubMedCrossRefGoogle Scholar
  34. 34.
    Sobey WJ, Beer SF, Carrington CA, Clark PMS, Frank BH, Gray IP, Luzio SD, Owens DR, Schneider AE, Siddle K, Temple RC, Hales CN (1989) Sensitive and specific twosite immunoradiometric assays for human insulin, proinsulin, 65–66 split and 32–33 split proinsulins. Biochem J 260:535–541PubMedGoogle Scholar
  35. 35.
    Sizonenko S, Irminger JC, Buhler L, Deng S, Morel P, Halban PA (1993) Kinetics of proinsulin conversion in human islets. Diabetes 42:933–936PubMedCrossRefGoogle Scholar
  36. 36.
    Gold G, Gishizky ML Grodsky GM (1982) Evidence that glucose marks cells resulting in preferential release of newly synthesized insulin. Science 218:56–58PubMedCrossRefGoogle Scholar
  37. 37.
    Farquhar MG, Palade GE (1981) The Golgi apparatus complex (1954–1981) from artifact to center stage. J Cell Biol 91:77s–103sPubMedCrossRefGoogle Scholar
  38. 38.
    Mains RE, Dickerson IM, May V, Stoffers DA, Perkins SN, Ouafi kL, Huster EJ, Eipper BA (1990) Cellular and molecular aspects of peptide hormone biosynthesis. Frontiers in Neuroendocrinology 11:52–89Google Scholar
  39. 39.
    Schekman R, Orci L (1996) Coat proteins and vesicle budding. Science 271: 1526–1533PubMedCrossRefGoogle Scholar
  40. 40.
    Losev E, Reinke CA, Jellen J, Strongin DE, Bevis BJ, Glick BS (2006) Golgi maturation visualized in living yeast. Nature 441:939–940CrossRefGoogle Scholar
  41. 41.
    Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90:335–349PubMedCrossRefGoogle Scholar
  42. 42.
    Orci L, Ravazzola M, Amherdt M, Madsen O, Vassalli JD, Perrelet A (1985) Direct identification of prohormone conversion site in insulin-secreting cells. Cell 42: 671–681PubMedCrossRefGoogle Scholar
  43. 43.
    Huang XF, Arvan P (1994) Formation of the insulin-containing secretory granule core occurs within immature β-granules. J Biol Chem 269:20838–20844PubMedGoogle Scholar
  44. 44.
    Steiner DF, Clark JL, Nolan C, Rubenstein AH, Margoliash E, Melani F, Oyer PE (1970) The biosynthesis of insulin and some speculation regarding the pathogenesis of human diabetes. In: Cerasi E, Luft R (eds) The pathogenesis of diabetes mellitus, Nobel Symposium 13. Almqvist and Wiksell, Stockholm, pp 57–80Google Scholar
  45. 45.
    Howell SL (1972) Role of ATP in the intracellular translocation of proinsulin and insulin in the rat pancreatic beta cell. Nat New Biol 235:85–86PubMedGoogle Scholar
  46. 46.
    Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123PubMedCrossRefGoogle Scholar
  47. 47.
    Orci L, Lambert AE, Kanazawa Y, Amherdt M, Rouiller C, Renold AE (1971) Morphological and biochemical studies of B cells in fetal rat endocrine pancreas in organ culture. Evidence for proinsulin biosynthesis. J Cell Biol 50:565–582PubMedCrossRefGoogle Scholar
  48. 48.
    Orci L, Halban P, Perrelet A, Amherdt M, Ravazzola M, Anderson RG (1994) pHindependent and dependent cleavage of proinsulin in the same secretory vesicle. J Cell Biol 126:1149–1156PubMedCrossRefGoogle Scholar
  49. 49.
    Arvan P, Kuliawat R, Prabakaran D, Zavacki AM, Elahi D, Wang S, Pilkey D (1991) Protein discharge from immature secretory granules displays both regulated and constitutive characteristics. J Biol Chem 266:14171–14174PubMedGoogle Scholar
  50. 50.
    Kuliawat R, Arvan P (1992) Protein targeting via the constitutive-like secretory pathway in isolated pancreatic islets: passive sorting in the immature granule compartment. J Cell Biol 118:521–529PubMedCrossRefGoogle Scholar
  51. 51.
    Kuliawat R, Klumperman J, Ludwig T, Arvan P (1997) Differential sorting of lysosomal enzymes out of the regulated secretory pathway in pancreatic beta cells. J Cell Biol 137:595–608PubMedCrossRefGoogle Scholar
  52. 52.
    Dittié AS, Thomas L, Thomas G, Tooze SA (1997) Interaction of furin in immature secretory granules from neuroendocrine cells with the AP-1 adaptor complex is modulated by casein kinase II phosphorylation. EMBO J 16:4859–4870PubMedCrossRefGoogle Scholar
  53. 53.
    Arvan P, Castle J (1992) Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biol 2:327–331PubMedCrossRefGoogle Scholar
  54. 54.
    Kemmler W, Peterson JD, Steiner DF (1971) Studies on the conversion of proinsulin to insulin. I. Conversion in vitro with trypsin and carboxypeptidase B. J Biol Chem 246:6786–6791PubMedGoogle Scholar
  55. 55.
    Zühlke H, Steiner DF, Lernmark A, Lipsey C (1976) Carboxypeptidase B-like and trypsin-like activities in isolated rat pancreatic islets. In: CIBA Foundation (eds) Polypeptide hormones: molecular and cellular aspects. Elsevier Excerpta Medica North-Holland, Amsterdam, pp 183–195Google Scholar
  56. 56.
    Fricker L, Evans C, Esch F, Herbert E (1986) Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Nature 323:461–464PubMedCrossRefGoogle Scholar
  57. 57.
    Davidson H, Rhodes C, Hutton J (1988) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic cell via two distinct site-specific endopeptidases. Nature 333:93–96PubMedCrossRefGoogle Scholar
  58. 58.
    Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Isolation of the putative structural gene for the lysine-arginine-cleavage endopeptidase required for processing of yeast prepro-alpha-factor. Cell 37:1075–1089PubMedCrossRefGoogle Scholar
  59. 59.
    Steiner DF, Smeekens SP, Ohagi S, Chan SJ (1992) The new enzymology of precursor processing endoproteases. J Biol Chem 267:23435–23438PubMedGoogle Scholar
  60. 60.
    Rhodes C, Lincoln B, Shoelson S (1992) Preferential cleavage of des-31,32-proinsulin over intact proinsulin by the insulin secretory granule type II endopeptidase. J Biol Chem 267:22719–22727PubMedGoogle Scholar
  61. 61.
    Molloy S, Thomas L, VanSlyke J, Stenberg P, Thomas G (1994) Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J 13:18–33PubMedGoogle Scholar
  62. 62.
    Rouillé Y, Duguay S, Lund K, Furuta M, Gong Q, Lipkind G, Oliva A Jr, Chan S, Steiner D (1995) Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neuroendocrinol 16: 322–361PubMedCrossRefGoogle Scholar
  63. 63.
    Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou A, Webb G, Zhu X, Steiner DF (1999) Proteolytic processing in the secretory pathway. J Biol Chem 274:20745–20748PubMedCrossRefGoogle Scholar
  65. 65.
    Smeekens SP, Montag AG, Thomas G, Albiges-Rizo C, Carroll R, Benig M, Phillips LA, Martin S, Ohagi S, Gardner P, Swift HH, Steiner DF (1992) Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2 and PC3. Proc Natl Acad Sci USA 89:8822–8826PubMedCrossRefGoogle Scholar
  66. 66.
    Tanaka S, Kurabuchi S, Mochida H, Kato T, Takahashi S, Watanabe T, Nakayama K (1996) Immunocytochemical localization of prohormone convertases PC1/PC3 and PC2 in rat pancreatic islets. Arch Histol Cytol 59:261–271PubMedCrossRefGoogle Scholar
  67. 67.
    Malide D, Seidah NG, Chretien M, Bendayan M (1995) Electron microscopic immunocytochemical evidence for the involvement of the convertases PC1 and PC2 in the processing of proinsulin in pancreatic beta cells. Histochem Cytochem 43:11–19Google Scholar
  68. 68.
    Itoh Y, Tanaka S, Takekoshi S, Itoh J, Osamura R (1996) Prohormone convertases (PC1/3 and PC2) in rat and human pancreas and islet cell tumors: subcellular immunohistochemical analysis. Pathol Int 46:726–737PubMedCrossRefGoogle Scholar
  69. 69.
    Scopsi L, Gullo M, Rilke F, Martin S, Steiner DF (1995) Proprotein convertases (PC1/PC3 and PC2) in normal and neoplastic human tissues: their use as markers of neuroendocrine differentiation. J Clin Endocrinol Metab 80:294–301PubMedCrossRefGoogle Scholar
  70. 70.
    Anderson E, VanSlyke J, Thulin C, Jean F, Thomas G (1997) Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J 16:1508–1518PubMedCrossRefGoogle Scholar
  71. 71.
    Zhou A, Mains RE (1994) Endoproteolytic processing of proopiomelanocortin and prohormone convertases 1 and 2 in neuroendocrine cells overexpressing prohormone convertases 1 or 2. J Biol Chem 269:17440–17447PubMedGoogle Scholar
  72. 72.
    Muller L, Zhu P, Juliano MA, Juliano L, Lindberg I (1999) A 36 residue peptide contains all of the information required for 7B2-mediated activation of hormone convertase 2. J Biol Chem 274:21471–21477PubMedCrossRefGoogle Scholar
  73. 73.
    Westphal C, Muller L, Zhou A, Zhu X, Bonner-Weir S, Steiner D, Lindberg I, Leder P (1999) The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing disease. Cell 96: 689–700PubMedCrossRefGoogle Scholar
  74. 74.
    Guest PC, Bailyes EM, Hutton J (1997) Endoplasmic reticulum Ca2+ is important for the proteolytic processing and intracellular transport of proinsulin in the pancreatic beta-cell. Biochem J 323:445–450PubMedGoogle Scholar
  75. 75.
    Verchere C, Paoletta M, Neerman-Arbez M, Rose K, Irminger J, Gingerich R, Kahn S, Halban P (1996) Des-(27–31) C-peptide. A novel secretory product of the rat pancreatic beta cell produced by truncation of proinsulin connecting peptide in secretory granules. J Biol Chem 271:27475–27481PubMedCrossRefGoogle Scholar
  76. 76.
    Kwok S, Chan S, Steiner D (1983) Cloning and nucleotide sequence analysis of the dog insulin gene: coded amino acid sequence of canine preproinsulin predicts an additional C-peptide fragment. J Biol Chem 258:2357–2363PubMedGoogle Scholar
  77. 77.
    Furuta M, Carroll R, Martin S, Swift H, Ravazzola M, Orci L, Steiner DF (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J Biol Chem 273: 3431–3437PubMedCrossRefGoogle Scholar
  78. 78.
    Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, Steiner DF (2002) Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci USA 99:10299–10304PubMedCrossRefGoogle Scholar
  79. 79.
    Wang J, Xu J, Finnerty J, Furuta M, Steiner DF, Verchere CB (2001) The prohormone convertase enzyme 2 (PC2) is essential for processing of pro-islet amyloid polypeptide at the N-terminal cleavage site. Diabetes 50:534–539PubMedCrossRefGoogle Scholar
  80. 80.
    Marzban L, Trigo-Gonzalez G, Zhu X, Rhodes CJ, Halban PA, Steiner DF, Verchere CB (2003) Role of beta-cell prohormone convertase 1/3 in processing of pro-islet amyloid polypeptide. Diabetes 53:141–148CrossRefGoogle Scholar
  81. 81.
    Guest PC, Rhodes CJ, Hutton JC (1989) Regulation of the biosynthesis of insulinsecretory-granule proteins. Biochem J 257:431–437PubMedGoogle Scholar
  82. 82.
    Naggert J, Fricker L, Varlamov O, Nishina P, Rouille Y, Steiner D, Carroll R, Paigen B, Leiter E (1995) Hyperproinsulinemia in obese fat/fat mice is associated with a point mutation in the carboxypeptidase E gene and reduced carboxypeptidase activity in the pancreatic islets. Nat Genet 10:135–142PubMedCrossRefGoogle Scholar
  83. 83.
    Song L, Fricker LD (1996) Tissue distribution and characterization of soluble and membrane-bound forms of metallocarboxypeptidase D. J Biol Chem 271:28884–28889PubMedCrossRefGoogle Scholar
  84. 84.
    Rhodes CJ, Halban PA (1987) Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic beta cells predominantly via a regulated, rather than a constitutive, pathway. J Cell Biol 105:145:53Google Scholar
  85. 85.
    Arvan P, Halban P (2004) Sorting ourselves out: seeking consensus on trafficking in the beta-cell. Traffic 5:53–61PubMedCrossRefGoogle Scholar
  86. 86.
    Michael J, Carroll R, Swift H, Steiner DF (1987) Studies on the molecular organization of rat insulin secretory granules. J Biol Chem 262:16531–16535PubMedGoogle Scholar
  87. 87.
    Rubenstein AH, Clark JL, Melani F, Steiner DF (1969) Secretion of proinsulin Cpeptide by pancreatic B cells and its circulation in blood. Nature 224:697–699CrossRefGoogle Scholar
  88. 88.
    Van Cauter E, Mestrez F, Sturis J, Polonsky KS (1992) Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes 41:368–377PubMedCrossRefGoogle Scholar
  89. 89.
    Polonsky KS (1995) The beta-cell in diabetes: from molecular genetics to clinical Research. Diabetes 44:705–17PubMedCrossRefGoogle Scholar
  90. 90.
    Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63PubMedGoogle Scholar
  91. 91.
    Frand AR, Cuozzo JW, Kaiser CA (2000) Pathways for protein disulphide bond formation. Trends Cell Biol 10:203–210PubMedCrossRefGoogle Scholar
  92. 92.
    Corbett JA (2006) Insulin biosynthesis: The IREny of it all. Cell Metab 4:175–183PubMedCrossRefGoogle Scholar
  93. 93.
    Steiner DF, Bell GI, Rubenstein AH, Chan SJ (2006) Chemistry and biosynthesis of the islet hormones: insulin, islet amyloid polypeptide (amylin), glucagon, somatostatin, and pancreatic polypeptide. In: DeGroot L, Jameson JL (eds) Endocrinology 5th edn. Saunders, Philadelphia, Chapter 48, pp 925–960Google Scholar
  94. 94.
    Hostens K, Pavlovic D, Zambre Y, Ling Z, Van Schravendijk C, Eizirik DL, Pipeleers DG (1999) Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release. J Clin Invest 104:67–72PubMedCrossRefGoogle Scholar
  95. 95.
    Wang J, Takeuchi T, Tanaka S, Kubo SK, Kayo T, Lu D, Takata K, Koizumi A, Izumi (1999) A mutation in the insulin 2 gene induces diabetes with severe pancreatic betacell dysfunction in the Mody mouse. J Clin Invest 103:27–37PubMedCrossRefGoogle Scholar
  96. 96.
    Støy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Piuzhnikov A, Below JE, Hayes MG, Cox NJ, Lipkind GM, Lipton RB, Greeley SA, Patch AM, Ellard S, Steiner DF, Hattersley AT, Philipson LH, Bell GI (2007) Insulin Gene Mutations as a Cause of Permanent Neonatal Diabetes. PNAS 104:15040–15044PubMedCrossRefGoogle Scholar
  97. 97.
    Zhu YL, Abdo A, Gesmonde JF, Zawalich KC, Zawalich W, Dannies PS (2004) Aggregation and lack of secretion of most newly synthesized proinsulin in non-beta-cell lines. Endocrinology 145:3840–3849PubMedCrossRefGoogle Scholar
  98. 98.
    Steiner DF, Chan SJ, Rubenstein AH (2001) Biosynthesis of insulin. In: Jefferson LS, Cherrington AD (eds) Handbook of physiology—The endocrine system II. Oxford University Press, Chapter 3, pp 49–77Google Scholar
  99. 99.
    Oyer PE, Cho S, Peterson JD, Steiner DF (1971) Studies on human proinsulin: Isolation and amino acid sequence of the human pancreatic C-peptide. J Biol Chem 246:1375–1386PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Donald F. Steiner
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoUSA

Personalised recommendations