Skip to main content

Genetic Disorders of the Pancreatic Beta Cell and Diabetes (Permanent Neonatal Diabetes and Maturity-Onset Diabetes of the Young)

  • Chapter
Pancreatic Beta Cell in Health and Disease

Abstract

Mutations in critical beta-cell genes can result in monogenic diabetes. This clinically heterogeneous group of disorders usually presents soon after birth as neonatal diabetes, or during childhood or early adulthood as maturity-onset diabetes of the young (MODY). Most defects arise in genes involved in pancreatic beta-cell development or the maintenance of beta-cell function. Studying the phenotype of patients with mutations and the mechanisms by which these mutations result in diabetes gives new insights into normal and pathological functioning of the beta cell. The most common genetic etiology in patients with MODY are mutations in the genes that encode the transcription factors hepatocyte nuclear factor (HNF)-1 alpha (TCF1), HNF-4 alpha (HNF4A) and HNF-1 beta (TCF2), and the glycolytic enzyme glycokinase (GCK). Mutations in each of these genes result in different clinical phenotypes and cause beta-cell dysfunction through different mechanisms. The commonest causes of neonatal diabetes are defects in betacell function, arising from mutations in genes encoding the subunits which form the KATP channel, Kir6.2 (KCNJ11) and SUR1 (ABCC8).

Defining the genetic subtypes of monogenic diabetes not only helps understanding of the beta cell, it also has considerable implications for patient care. A genetic diagnosis provides accurate information regarding inheritance, prognosis, can explain clinical features and may guide patient treatment. The best example of pharmacogenetics is that patients with KCNJ11 mutations, despite being insulin dependent, can have excellent glycemic control on high-dose sulfonylureas. Defining the genetic etiology of monogenic diabetes has therefore contributed both to science and patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flanagan SE, Edghill EL, Gloyn AL, Ellard S, Hattersley AT (2006) Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia 49: 1190–1197

    PubMed  CAS  Google Scholar 

  2. Iafusco D, Stazi MA, Cotichini R, Cotellessa M, Martinucci ME, Mazzella M, Cherubini V, Barbetti F, Martinetti M, Cerutti F, Prisco F (2002) Permanent diabetes mellitus in the first year of life. Diabetologia 45:798–804

    PubMed  CAS  Google Scholar 

  3. Edghill EL, Dix RJ, Flanagan SE, Bingley PJ, Hattersley AT, Ellard S, Gillespie KM (2006) HLA Genotyping supports a nonautoimmune etiology in patients diagnosed with diabetes under the age of 6 months. Diabetes 55:1895–1898

    PubMed  CAS  Google Scholar 

  4. Shield JPH, Gardner RJ, Wadsworth EJK, Whiteford ML, James RS, Robinson DO, Baum JD, Temple IK (1997) Aetiopathology and genetic basis of neonatal diabetes. Arch Dis Child 76:F39–F42

    CAS  Google Scholar 

  5. Polak M, Shield J (2004) Neonatal and very-early-onset diabetes mellitus. Semin Neonatol 9:59–65

    PubMed  Google Scholar 

  6. Temple IK, Shield JP (2002) Transient neonatal diabetes, a disorder of imprinting. J Med Genet 39:872–875

    PubMed  CAS  Google Scholar 

  7. Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson DO, Shield JP (2000) Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes 49:1359–1366

    PubMed  CAS  Google Scholar 

  8. Gloyn AL, Reimann F, Girard C, Edghill EL, Proks P, Pearson ER, Temple IK, Mackay DJ, Shield JP, Freedenberg D, Noyes K, Ellard S, Ashcroft FM, Gribble FM, Hattersley AT (2005) Relapsing diabetes can result from moderately activating mutations in KCNJ11. Hum Mol Genet 14:925–934

    PubMed  CAS  Google Scholar 

  9. Babenko AP, Polak M, Cave H, Busiah K, Czernichow P, Scharfmann R, Bryan J, Aguilar-Bryan L, Vaxillaire M, Froguel P (2006) Activating mutations in ABCC8 cause neonatal diabetes mellitus. N Engl J Med 355:456–466

    PubMed  CAS  Google Scholar 

  10. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15:106–110

    PubMed  CAS  Google Scholar 

  11. Schwitzgebel VM, Mamin A, Brun T, Ritz-Laser B, Zaiko M, Maret A, Jornayvaz FR, Theintz GE, Michielin O, Melloul D, Philippe J (2003) Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab 88:4398–4406

    PubMed  CAS  Google Scholar 

  12. Stoffers DA, Ferrer J, Clarke WL, Habener JF (1997) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17:138–139

    PubMed  CAS  Google Scholar 

  13. Johnsson JL, Carlsson T, Edlund T, Edlund H (1994) Insulin promoter factor 1 is required for pancreas development in mice. Nature 371:606–609

    Google Scholar 

  14. Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, R JC, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Goodwin G, Houlston RS (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305

    PubMed  CAS  Google Scholar 

  15. Hoveyda N, Shield JP, Garrett C, Chong WK, Beardsall K, Bentsi-Enchill E, Mallya H, Thompson MH (1999) Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome. J Med Genet 36:700–704

    PubMed  CAS  Google Scholar 

  16. Zecchin E, Mavropoulos A, Devos N, Filippi A, Tiso N, Meyer D, Peers B, Bortolussi M, Argenton F (2004) Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates. Dev Biol 268:174–184

    PubMed  CAS  Google Scholar 

  17. Krapp A, Knofler M, Frutiger S, Hughes GJ, Hagenbuchle O, Wellauer PK (1996) The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. EMBO J 15:4317–4329

    PubMed  CAS  Google Scholar 

  18. Obata J, Yano M, Mimura H, Goto T, Nakayama R, Mibu Y, Oka C, Kawaichi M (2001) p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes Cells 6:345–360

    PubMed  CAS  Google Scholar 

  19. Yorifuji T, Kurokawa K, Mamada M, Imai T, Kawai M, Nishi Y, Shishido S, Hasegawa Y, Nakahata T (2004) Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: Phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1beta gene due to germline mosaicism. J Clin Endocrinol Metab 89: 2905–2908

    PubMed  CAS  Google Scholar 

  20. Edghill EL, Ellard S, Noordam C, Minton JAL, Slingerland A, Hattersley AT (2006) Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intra uterine growth retardation: support for a critical role of HNF-1beta in human pancreatic development. Diabet Med 23:1301–1306

    PubMed  CAS  Google Scholar 

  21. Maestro MA, Boj SF, Luco RF, Pierreux CE, Cabedo J, Servitja JM, German MS, Rousseau GG, Lemaigre FP, Ferrer J (2003) Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Hum Mol Genet 12:3307–3314

    PubMed  CAS  Google Scholar 

  22. Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S (2005) Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci USA 102: 1490–1495

    PubMed  CAS  Google Scholar 

  23. Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, Charon C, Nicolino M, Boileau P, Cavener DR, Bougneres P, Taha D, Julier C (2006) Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38:682–687

    PubMed  CAS  Google Scholar 

  24. Taha D, Barbar M, Kanaan H, Williamson Balfe J (2003) Neonatal diabetes mellitus, congenital hypothyroidism, hepatic fibrosis, polycystic kidneys, and congenital glaucoma: a new autosomal recessive syndrome? Am J Med Genet A 122: 269–273

    PubMed  Google Scholar 

  25. Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25:406–409

    PubMed  CAS  Google Scholar 

  26. Biason-Lauber A, Lang-Muritano M, Vaccaro T, Schoenle EJ (2002) Loss of kinase activity in a patient with Wolcott-Rallison syndrome caused by a novel mutation in the EIF2AK3 gene. Diabetes 51:2301–2305

    PubMed  CAS  Google Scholar 

  27. Senee V, Vattem KM, Delepine M, Rainbow LA, Haton C, Lecoq A, Shaw NJ, Robert JJ, Rooman R, Diatloff-Zito C, Michaud JL, Bin-Abbas B, Taha D, Zabel B, Franceschini P, Topaloglu AK, Lathrop GM, Barrett TG, Nicolino M, Wek RC, Julier C (2004) Wolcott-Rallison Syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes 53:1876–1883

    PubMed  CAS  Google Scholar 

  28. Brickwood S, Bonthron DT, Al-Gazali LI, Piper K, Hearn T, Wilson DI, Hanley NA (2003) Wolcott-Rallison syndrome: pathogenic insights into neonatal diabetes from new mutation and expression studies of EIF2AK3. J Med Genet 40:685–689

    PubMed  CAS  Google Scholar 

  29. Iyer S, Korada M, Rainbow L, Kirk J, Brown RM, Shaw N, Barrett TG (2004) Wolcott-Rallison syndrome: a clinical and genetic study of three children, novel mutation in EIF2AK3 and a review of the literature. Acta Paediatr 93:1195–1201

    PubMed  CAS  Google Scholar 

  30. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/-mice reveals a role for translational control in secretory cell survival. Mol Cell 7:1153–1163

    PubMed  CAS  Google Scholar 

  31. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18:7499–7509

    PubMed  CAS  Google Scholar 

  32. Bennett CL, Ochs HD (2001) IPEX is a unique X-linked syndrome characterized by immune dysfunction, polyendocrinopathy, enteropathy, and a variety of autoimmune phenomena. Curr Opin Pediatr 13:533–538

    PubMed  CAS  Google Scholar 

  33. Powell BR, Buist NR, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100:731–737

    PubMed  CAS  Google Scholar 

  34. Wildin RS, Freitas A (2005) IPEX and FOXP3: clinical and research perspectives. J Autoimmun 25Suppl:56–62

    PubMed  CAS  Google Scholar 

  35. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    PubMed  CAS  Google Scholar 

  36. Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM, Temple IK, Mackay D, Shield JP, Sumnik Z, van Rhijn A, Wales JK, Clark P, Gorman S, Aisenberg J, Ellard S, Njolstad PR, Ashcroft FM, Hattersley AT (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849

    PubMed  CAS  Google Scholar 

  37. Gloyn AL, Cummings EA, Edghill EL, Harries LW, Scott R, Costa T, Temple IK, Hattersley AT, Ellard S (2004) Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 Gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel. J Clin Endocrinol Metab 89:3932–3935

    PubMed  CAS  Google Scholar 

  38. Slingerland AS, Hattersley AT (2006) Activating mutations in the gene encoding kir6.2 alter fetal and postnatal growth and also cause neonatal diabetes. J Clin Endocrinol Metab 91:2782–2788

    PubMed  CAS  Google Scholar 

  39. Hattersley AT, Ashcroft FM (2005) Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 54:2503–2513

    PubMed  CAS  Google Scholar 

  40. Sagen JV, Raeder H, Hathout E, Shehadeh N, Gudmundsson K, Baevre H, Abuelo D, Phornphutkul C, Molnes J, Bell GI, Gloyn AL, Hattersley AT, Molven A, Sovik O, Njolstad PR (2004) Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53:2713–2718

    PubMed  CAS  Google Scholar 

  41. Zung A, Glaser B, Nimri R, Zadik Z (2004) Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. J Clin Endocrinol Metab 89:5504–5507

    PubMed  CAS  Google Scholar 

  42. Pearson ER, flechtner I, Njolstad PR, Maleki MT, Flanagan S.E, Larkin B, Ashcroft FM, Kilmes I, Codner E, Iotova V, Slingerland AS, Shield J, Robert J-J, Holst JJ, Clark CM, Ellard S, Sovik O, Polak M, Hattersley AT (2006) Switching from insulin to oral sulfonylureas in patients with diabetes due to kir6.2 mutations. N Engl J Med 355:467–477

    PubMed  CAS  Google Scholar 

  43. Proks P, Antcliff JF, Lippiat J, Gloyn AL, Hattersley AT, Ashcroft FM (2004) Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proc Natl Acad Sci USA 101:17539–17544

    PubMed  CAS  Google Scholar 

  44. Koster JC, Remedi MS, Dao C, Nichols CG (2005) ATP and sulfonylurea sensitivity of mutant ATP-sensitive K+ channels in neonatal diabetes: implications for pharmacogenomic therapy. Diabetes 54:2645–2654

    PubMed  CAS  Google Scholar 

  45. Antcliff JF, Haider S, Proks P, Sansom MS, Ashcroft FM (2005) Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J 24:229–239

    PubMed  CAS  Google Scholar 

  46. Proks P, Arnold AL, Bruining J, Girard C, Flanagan SE, Larkin B, Colclough K, Hattersley AT, Ashcroft FM, Ellard S (2006) A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum Mol Genet 15:1793–1800

    PubMed  CAS  Google Scholar 

  47. Njolstad PR, Sovik O, Cuesta-Munoz A, Bjorkhaug L, Massa O, Barbetti F, Undlien DE, Shiota C, Magnuson MA, Molven A, Matschinsky FM, Bell GI (2001) Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med 344:1588–1592

    PubMed  CAS  Google Scholar 

  48. Glaser B, Kesavan P, Haymen M, Davies E, Cuesta A, Buchs A, Stanley CA, Thornton PS, Permutt MA, Matschinsky FM, Herold KC (1998) Familial hyper insulinism caused by an activating glucokinase mutation. N Engl J Med 338:226–230

    PubMed  CAS  Google Scholar 

  49. Njolstad PR, Sagen JV, Bjorkhaug L, Odili S, Shehadeh N, Bakry D, Sarici SU, Alpay F, Molnes J, Molven A, Sovik O, Matschinsky FM (2003) Permanent neonatal diabetes caused by glucokinase deficiency: inborn error of the glucose-insulin signaling pathway. Diabetes 52:2854–2860

    PubMed  CAS  Google Scholar 

  50. Santer R, Schneppenheim R, Dombrowski A, Gotze H, Steinmann B, Schaub J (1997) Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 17:324–326

    PubMed  CAS  Google Scholar 

  51. Yoo HW, Shin YL, Seo EJ, Kim GH (2002) Identification of a novel mutation in the GLUT2 gene in a patient with Fanconi-Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia. Eur J Pediatr 161:351–353

    PubMed  CAS  Google Scholar 

  52. Owen K, Hattersley AT (2001) Maturity-onset diabetes of the young: from clinical description to molecular genetic characterization. Best Pract Res Clin Endocrinol Metab 15:309–323.

    PubMed  CAS  Google Scholar 

  53. Fajans SS, Bell GI, Bowden DW (1992) MODY: a model for the study of the molecular genetics of NIDDM. [Review]. J Lab Clin Mede 119:206–210

    CAS  Google Scholar 

  54. Froguel P, Vaxillaire M, Sun F, Velho G, Zouali H, Butel MO, Lesage S, Vionnet N, Clement K, Fougerousse F, Tanizawa Y, Weissenbach J, Beckmann JS, Lathrop GM, Passa P, Permutt MA, Cohen D (1992) Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 356:162–164

    PubMed  CAS  Google Scholar 

  55. Hattersley AT, Turner RC, Permutt MA, Patel P, Tanizawa Y, Chiu KC, O’Rahilly S, Watkins PJ, Wainscoat JS (1992) Linkage of type 2 diabetes to the glucokinase gene. Lancet 339:1307–1310

    PubMed  CAS  Google Scholar 

  56. Gloyn AL (2003) Glucokinase (GCK) mutations in hyper-and hypoglycemia: Maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum Mutat 22:353–362

    PubMed  CAS  Google Scholar 

  57. Hattersley AT (1996) Glucokinase mutations and Type 2 diabetes. In: Lightman S (ed) Horizons in medicine. Blackwell Science, Bristol, pp 440–449

    Google Scholar 

  58. Gloyn AL, Ellard S (2006) Defining the genetic aetiology of diabetes can improve treatment. Expert Opin Biol Ther 7:1759–1767

    CAS  Google Scholar 

  59. Stride A, Vaxillaire M, Tuomi T, Barbetti F, Njolstad PR, Hansen T, Costa A, Conget I, Pedersen O, Sovik O, Lorini R, Groop L, Froguel P, Hattersley AT (2002) The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia 45:427–435

    PubMed  CAS  Google Scholar 

  60. Pearson ER, Velho G, Clark P, Stride A, Shepherd M, Frayling TM, Bulman MP, Ellard S, Froguel P, Hattersley AT (2001) beta-cell genes and diabetes: quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-1alpha and glucokinase mutations. Diabetes 50:S101–S107

    PubMed  CAS  Google Scholar 

  61. Prisco F, Iafusco D, Franzese A, Sulli N, Barbetti F (2000) MODY 2 presenting as neonatal hyperglycaemia: a need to reshape the definition of “neonatal diabetes”? Diabetologia 43:1331–1332

    PubMed  CAS  Google Scholar 

  62. Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S (1998) Mutations in the glucokinase gene of the fetus in reduced birthweight. Nat Genet 19:268–270

    PubMed  CAS  Google Scholar 

  63. Appleton M, Ellard S, Bulman M, Frayling T, Page R, Hattersley AT (1997) Clinical characteristics of the HNF1alpha (MODY3) and glucokinase mutations. Diabetologia 40:A161

    Google Scholar 

  64. Froguel P, Zouali H, Vionnet N, Velho G, Vaxillaire M, Sun F, Lesage S, Stoffel M, Takeda J, Passa P, et al (1993) Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med 328:697–702

    PubMed  CAS  Google Scholar 

  65. Page RC, Hattersley AT, Levy JC, Barrow B, Patel P, Lo D, Wainscoat JS, Permutt MA, Bell GI, Turner RC (1995) Clinical characteristics of subjects with a missense mutation in glucokinase. Diab Med 12:209–217

    CAS  Google Scholar 

  66. Matschinsky FM (1990) Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 39:647–652

    PubMed  CAS  Google Scholar 

  67. Gidh-Jain M, Takeda J, Xu LZ (1993) Glucokinase mutations associated with noninsulin dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc Nat Acad Sci USA 90: 1932–1936

    PubMed  CAS  Google Scholar 

  68. Burke CV, Buettger CW, Davis EA, McClane SJ, Matschinsky FM, Raper SE (1999) Cell-biological assessment of human glucokinase mutants causing maturity-onset diabetes of the young type 2 (MODY-2) or glucokinase-linked hyperinsulinaemia (GK-HI). Biochem J 342:345–352

    PubMed  CAS  Google Scholar 

  69. Shih DQ, Stoffel M (2001) Dissecting the transcriptional network of pancreatic islets during development and differentiation. Proc Natl Acad Sci USA 98:14189–14191.

    PubMed  CAS  Google Scholar 

  70. Rey-Campos J, Chouard T, Yaniv M, Cereghini S (1991) vHNF1 is a homeoprotein that activates transcription and forms heterodimers with HNF1. EMBO J 10: 1445–1457

    PubMed  CAS  Google Scholar 

  71. Boj SF, Parrizas M, Maestro MA, Ferrer J (2001) A transcription factor regulatory circuit in differentiated pancreatic cells. Proc Natl Acad Sci USA 98:14481–14486

    PubMed  CAS  Google Scholar 

  72. Ferrer J (2002) A genetic switch in pancreatic beta-cells: implications for differentiation and haploinsufficiency. Diabetes 51:2355–2362

    PubMed  CAS  Google Scholar 

  73. Bell GI, Xiang KS, Newman MV (1991) Gene for non-insulin dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q. Proc Nat Acad Sci USA 88:1484–1488

    PubMed  CAS  Google Scholar 

  74. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI (1996) Mutations in the hepatocyte nuclear factor 4 alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384:458–460

    PubMed  CAS  Google Scholar 

  75. Ryffel GU (2001) Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J Mol Endocrinol 27:11–29

    PubMed  CAS  Google Scholar 

  76. Ellard S, Colclough K (2006) Mutations in the gene encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 7:854–869

    Google Scholar 

  77. Pearson ER, Pruhova S, Tack CJ, Johansen A, Castleden HA, Lumb PJ, Wierzbicki AS, Clark PM, Lebl J, Pedersen O, Ellard S, Hansen T, Hattersley AT (2005) Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia 48:878–885

    PubMed  CAS  Google Scholar 

  78. Byrne MM, Sturis J, Fajans SS, Ortiz FJ, Stoltz A, Stoffel M, Smith MJ, Bell GI, Halter JB, Polonsky KS (1995) Altered insulin secretory responses to glucose in subjects with a mutation in the MODY1 gene on chromosome 20. Diabetes 44:699–704

    PubMed  CAS  Google Scholar 

  79. Fajans SS, Brown MB (1993) Administration of sulfonylureas can increase glucoseinduced insulin secretion for decades in patients with maturity-onset diabetes of the young. Diabetes Care 16:1254–1261

    PubMed  CAS  Google Scholar 

  80. Steele AM, Barrett TG, Stals K, Shields JPH, Tysoe C, Ellard, Hattersley AT, Pearson ER (2006) A novel cause of hyperinsulinaemic hypoglycaemia with increased birthweight due to heterozygous mutations in the HNF4A gene. Diabet Med 23:3

    Google Scholar 

  81. Lehto M, Bitzen PO, Isomaa B, Wipemo C, Wessman Y, Forsblom C, Tuomi T, Taskinen MR, Groop L (1999) Mutation in the HNF-4 alpha gene affects insulin secretion and triglyceride metabolism. Diabetes 48:423–425

    PubMed  CAS  Google Scholar 

  82. Hansen SK, Parrizas M, Jensen ML, Pruhova S, Ek J, Boj SF, Johansen A, Maestro MA, Rivera F, Eiberg H, Andel M, Lebl J, Pedersen O, Ferrer J, Hansen T (2002) Genetic evidence that HNF-1alpha-dependent transcriptional control of HNF-4alpha is essential for human pancreatic beta cell function. J Clin Invest 110:827–833

    PubMed  CAS  Google Scholar 

  83. Thomas H, Jaschkowitz K, Bulman M, Frayling TM, Mitchell SMS, Roosen S, Lingott-Frieg A, Tack CJ, Ellard S, Ryffel GU, Hattersley AT (2001) A distant upstream promoter of the HNF-4alpha gene connects the transcription factors involved in maturity-onset diabetes of the young. Hum Mol Genet 10:2089–2097

    PubMed  CAS  Google Scholar 

  84. Gupta RK, Vatamaniuk MZ, Lee CS, Flaschen RC, Fulmer JT, Matschinsky FM, Duncan SA, Kaestner KH (2005) The MODY1 gene HNF-4alpha regulates selected genes involved in insulin secretion. J Clin Invest 115:1006–1015

    PubMed  CAS  Google Scholar 

  85. Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, Chen X, Cox NJ, Oda Y, Yano H, Le Beau MM, Yamada S, Nishigori H, Takeda J, Fajans SS, Hattersley AT, Iwasaki N, Pedersen O, Polonsky KS, Turner RC, Velho G, Chevre J-C, Froguel P, Bell GI (1996) Mutations in the hepatic nuclear factor 1 alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384:455–458

    PubMed  CAS  Google Scholar 

  86. Frayling T, Bulman MP, Ellard S, Appleton M, Dronsfield M, Mackie A, Baird J, Kaisaki P, Yamagata K, Bell G, Bain S, Hattersley A (1997) Mutations in the Hepatocyte Nuclear Factor 1 Alpha gene are a common cause of maturity-onset diabetes of the young in the United Kingdom. Diabetes 46:720–725

    PubMed  CAS  Google Scholar 

  87. Lehto M, Tuomi T, Mahtani MM, Widen E, Forsblom C, Sarelin L, Gullstrom M, Isomaa B, Lehtovirta M, Hyrkko A, Kanninen T, Orho M, Manley S, Turner RC, Brettin T, Kirby A, Thomas J, Duyk G, Lander E, Taskinen M-R, Groop L (1997) Characterization of the MODY3 phenotype. Early-onset diabetes caused by an insulin secretion defect. J Clin Invest 99:582–591

    PubMed  CAS  Google Scholar 

  88. Harries LW, Ellard S, Stride A, Morgan NG, Hattersley AT (2006) Isomers of the TCF1 gene encoding hepatocyte nuclear factor-1 alpha show differential expression in the pancreas and define the relationship between mutation position and clinical phenotype in monogenic diabetes. Hum Mol Genet 15:2216–2224

    PubMed  CAS  Google Scholar 

  89. Stride A, Ellard S, Clark P, Shakespeare L, Salzmann M, Shepherd M, Hattersley AT (2005) Beta-cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-1alpha mutation carriers. Diabetes Care 28:1751–1756

    PubMed  CAS  Google Scholar 

  90. Menzel R, Kaisaki PJ, Rjasanowski I, Heinke P, Kerner W, Menzel S (1998) A low renal threshold for glucose in diabetic patients with a mutation in the hepatocyte nuclear factor-1alpha (HNF-1alpha) gene. Diabet Med 15:816–820

    PubMed  CAS  Google Scholar 

  91. Bingham C, Ellard S, Nicholls AJ, Pennock CA, Allen J, James AJ, Satchell SC, Salzmann MB, Hattersley AT (2001) The generalized aminoaciduria seen in patients with hepatocyte nuclear factor-1alpha mutations is a feature of all patients with diabetes and is associated with glucosuria. Diabetes 50:2047–2052

    PubMed  CAS  Google Scholar 

  92. Byrne MM, Sturis J, Menzel S, Yamagata K, Fajans SS, Dronsfield MJ, Bain SC, Hattersley AT, Velho G, Froguel P, Bell GI, Polonsky KS (1996) Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on Chromosome 12. Diabetes 45:1503–1510

    PubMed  CAS  Google Scholar 

  93. Hattersley AT (1998) Maturity-onset diabetes of the young: Clinical heterogeneity explained by genetic hetergeneity. Diabet Med 15:15–24

    PubMed  CAS  Google Scholar 

  94. Velho G, Vaxillaire M, Boccio V, Charpentier G, Froguel P (1996) Diabetes complications in NIDDM kindreds linked to the MODY3 locus on chromosome 12q. Diabetes Care 19:915–919

    PubMed  CAS  Google Scholar 

  95. Isomaa B, Henricsson M, Lehto M, Forsblom C, Karanko S, Sarelin L, Haggblom M, Groop L (1998) Chronic diabetic complications in patients with MODY3 diabetes. Diabetologia 41:467–473

    PubMed  CAS  Google Scholar 

  96. Sovik O, Njolstad P, Folling I, Sagen J, Cockburn BN, Bell GI (1998) Hyperexcitability to sulphonylurea in MODY3. Diabetologia 41:607–608

    PubMed  CAS  Google Scholar 

  97. Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT (2000) Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor 1 alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med 17:543–545

    PubMed  CAS  Google Scholar 

  98. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT (2003) Genetic aetiology of hyperglycaemia determines response to treatment in diabetes. Lancet 362:1275–1281

    PubMed  CAS  Google Scholar 

  99. Yamagata K, Nammo T, Moriwaki M, Ihara A, Iizuka K, Yang Q, Satoh T, Li M, Uenaka R, Okita K, Iwahashi H, Zhu Q, Cao Y, Imagawa A, Tochino Y, Hanafusa T, Miyagawa J, Matsuzawa Y (2002) Overexpression of dominant-negative mutant hepatocyte nuclear fctor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes 51:114–123

    PubMed  CAS  Google Scholar 

  100. Harries LW, Ellard S, Jones RW, Hattersley AT, Bingham C (2004) Abnormal splicing of hepatocyte nuclear factor-1 beta in the renal cysts and diabetes syndrome. Diabetologia 47:937–942

    PubMed  CAS  Google Scholar 

  101. Wang H, Maechler P, Hagenfeldt KA, Wollheim CB (1998) Dominant-negative suppression of HNF-1alpha function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic beta-cell line. EMBO J 17:6701–6713

    PubMed  CAS  Google Scholar 

  102. Wang H, Antinozzi PA, Hagenfeldt KA, Maechler P, Wollheim CB (2000) Molecular targets of a human HNF1 alpha mutation responsible for pancreatic beta-cell dysfunction. EMBO J 19:4257–4264

    PubMed  CAS  Google Scholar 

  103. Shih DQ, Screenan S, Munoz KN, Philipson L, Pontoglio M, Yaniv M, Polonsky KS, Stoffel M (2001) Loss of HNF-1alpha function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes 50:2472–2480

    PubMed  CAS  Google Scholar 

  104. Wobser H, Dumann H, Kogel D, Wang H, Reimertz C, Wollheim CB, Byrne MM, Prehn JH (2001) Dominant-negative suppression of HNF-1alpha results in mitochondrial dysfunction, INS-1 cell apoptosis, and Increased sensitivity to ceramide-, but not to high glucose-induced cell death. J Biol Chem 27:27

    Google Scholar 

  105. Pontoglio M, Prie D, Cheret C, Doyen A, Lero C, Froguel P, Velho G, Yaniv M, Friedlander G (2000) HNF1 alpha controls renal glucose reabsorption in mouse and man. EMBO Rep 1:359–365

    PubMed  CAS  Google Scholar 

  106. Gragnoli C, Stanojevic V, Gorini A, Von Preussenthal GM, Thomas MK, Habener JF (2005) IPF-1/MODY4 gene missense mutation in an Italian family with type 2 and gestational diabetes. Metabolism 54:983–988

    PubMed  CAS  Google Scholar 

  107. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H (1998) beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity-onset diabetes. Genes Dev 12:1763–1768

    PubMed  CAS  Google Scholar 

  108. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn B, Lindner T, Yamagata K, Ogata M, Tomonaga O, Kuroki H, Kasahar T, Iwamoto Y, Bell GI (1997) Mutation in hepatocyte nuclear factor-1b gene (TCF2) associated with MODY. Nat Genet 17:384–385

    PubMed  CAS  Google Scholar 

  109. Bingham C, Hattersley AT (2004) Renal cysts and diabetes syndrome resulting from mutations in hepatocyte nuclear factor-1beta. Nephrol Dial Transplant 19:2703–2708

    PubMed  CAS  Google Scholar 

  110. Edghill EL, Bingham C, Ellard S, Hattersley AT (2006) Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 43:84–90

    PubMed  CAS  Google Scholar 

  111. Bellanne-Chantelot C, Clauin S, Chauveau D, Collin P, Daumont M, Douillard C, Dubois-Laforgue D, Dusselier L, Gautier JF, Jadoul M, Laloi-Michelin M, Jacquesson L, Larger E, Louis J, Nicolino M, Subra JF, Wilhem JM, Young J, Velho G, Timsit J (2005) Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes 54:3126–3132

    PubMed  CAS  Google Scholar 

  112. Ulinski T, Lescure S, Beaufils S, Guigonis V, Decramer S, Morin D, Clauin S, Deschenes G, Bouissou F, Bensman A, Bellanne-Chantelot C (2006) Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 17:497–503

    PubMed  CAS  Google Scholar 

  113. Pearson ER, Badman MK, Lockwood CR, Clark PM, Ellard S, Bingham C, Hattersley AT (2004) Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and-1beta mutations. Diabetes Care 27:1102–1107

    PubMed  CAS  Google Scholar 

  114. Nishigori H, Yamada S, Kohama T, Tomura H, Sho K, Horikawa Y, Bell GI, Takeuchi T, Takeda J (1998) Frameshift mutation, A263fsinsGG, in the hepatocyte nuclear factor-1 beta gene associated with diabetes and renal dysfunction. Diabetes 47:1354–1355

    PubMed  CAS  Google Scholar 

  115. Bingham C, Bulman MP, Ellard S, Allen LI, Lipkin GW, Hoff WG, Woolf AS, Rizzoni G, Novelli G, Nicholls AJ, Hattersley AT (2001) Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 68:219–224

    PubMed  CAS  Google Scholar 

  116. Carbone I, Cotellessa M, Barella C, Minetti C, Ghiggeri GM, Caridi G, Perfumo F, Lorini R (2002) A novel hepatocyte nuclear factor-1beta (MODY-5) gene mutation in an Italian family with renal dysfunctions and early-onset diabetes. Diabetologia 45:153–154

    PubMed  CAS  Google Scholar 

  117. Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O (1999) A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet 8:2001–2008

    PubMed  CAS  Google Scholar 

  118. Bellanne-Chantelot C, Chauveau D, Gautier JF, Dubois-Laforgue D, Clauin S, Beaufils S, Wilhelm JM, Boitard C, Noel LH, Velho G, Timsit J (2004) Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med 140:510–517

    PubMed  CAS  Google Scholar 

  119. Montoli A, Colussi G, Massa O, Caccia R, Rizzoni G, Civati G, Barbetti F (2002) Renal cysts and diabetes syndrome linked to mutations of the hepatocyte nuclear factor-1 beta gene: description of a new family with associated liver involvement. Am J Kidney Dis 40:397–402

    PubMed  Google Scholar 

  120. Kitanaka S, Miki Y, Hayashi Y, Igarashi T (2004) Promoter-specific repression of hepatocyte nuclear factor (HNF)-1 beta and HNF-1 alpha transcriptional activity by an HNF-1 beta missense mutant associated with Type 5 maturity-onset diabetes of the young with hepatic and biliary manifestations. J Clin Endocrinol Metab 89:1369–1378

    PubMed  CAS  Google Scholar 

  121. Barbacci E, Reber M, Ott M-O, Breillat C, Huetz F, Cereghini S (1999) Variant hepatocyte nuclear factor1 is required for visceral endoderm specification. Development 126:4795–4805

    PubMed  CAS  Google Scholar 

  122. Coffinier C, Thepot D, Babinet C, Yaniv M, Barra J (1999) Essential role for the homeoprotein vHNF1/HNF1beta in visceral endoderm differentiation. Development 126:4785–4794

    PubMed  CAS  Google Scholar 

  123. Poll AV, Pierreux CE, Lokmane L, Haumaitre C, Achouri Y, Jacquemin P, Rousseau GG, Cereghini S, Lemaigre FP (2006) A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes 55:61–69

    PubMed  CAS  Google Scholar 

  124. Igarashi P, Shao X, McNally BT, Hiesberger T (2005) Roles of HNF-1beta in kidney development and congenital cystic diseases. Kidney Int 68:1944–1947

    PubMed  CAS  Google Scholar 

  125. Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J, Shirts B, Xu L, Zhu H, Barmada MM, Bleyer AJ (2002) Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet 39:882–892

    PubMed  CAS  Google Scholar 

  126. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallao R, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptorlike protein. Nat Genet 30:259–269

    PubMed  Google Scholar 

  127. Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, Saad M, Warram JH, Montminy M, Krolewski AS (1999) Mutations in NEUROD1 are associated with the development of Type 2 diabetes mellitus. Nat Genet 23:323–328

    PubMed  CAS  Google Scholar 

  128. Kristinsson SY, Thorolfsdottir ET, Talseth B, Steingrimsson E, Thorsson AV, Helgason T, Hreidarsson AB, Arngrimsson R (2001) MODY in Iceland is associated with mutations in HNF-1alpha and a novel mutation in NeuroD1. Diabetologia 44:2098–2103

    PubMed  CAS  Google Scholar 

  129. Naya FJ, Stellrecht CM, Tsai MJ (1995) Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 9:1009–1019

    PubMed  CAS  Google Scholar 

  130. Naya FJ, Huang H-P, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai M-J (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD1-deficient mice. Genes Dev 11:2323–2334

    PubMed  CAS  Google Scholar 

  131. Qiu Y, Sharma A, Stein R (1998) p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene. Mol Cell Biol 18:2957–2964

    PubMed  CAS  Google Scholar 

  132. Sharma A, Moore M, Marcora E, Lee JE, Qiu Y, Samaras S, Stein R (1999) The NeuroD1/BETA2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding. Mol Cell Biol 19:704–713

    PubMed  CAS  Google Scholar 

  133. Raeder H, Johansson S, Holm PI, Haldorsen IS, Mas E, Sbarra V, Nermoen I, Eide SA, Grevle L, Bjorkhaug L, Sagen JV, Aksnes L, Souik O, Lombardo D, Molven A, Njolstad PR (2006) Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genetics 38:54–62

    CAS  Google Scholar 

  134. Lombardo D (2001) Bile salt-dependent lipase: its pathophysiological implications. Biochim Biophys Acta 1533:1–28

    PubMed  CAS  Google Scholar 

  135. Hui DY, Howles PN (2002) Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res 43:2017–2030

    PubMed  CAS  Google Scholar 

  136. Frayling TM, Evans JC, Bulman MP, Pearson E, Allen L, Owen K, Bingham C, Hannemann M, Shepherd M, Ellard S, Hattersley AT (2001) beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 50:S94–S100

    PubMed  CAS  Google Scholar 

  137. Hattersley AT (2006) Beyond the beta cell in diabetes. Nat Genet 38:12–13

    PubMed  CAS  Google Scholar 

  138. Fajans SS, Bell GI (2006) Phenotypic heterogeneity between different mutations of MODY subtypes and within MODY pedigrees. Diabetologia 49:1106–1108

    PubMed  CAS  Google Scholar 

  139. Servitja JM, Ferrer J (2004) Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia 47:597–613

    PubMed  CAS  Google Scholar 

  140. Hattersley AT, Pearson ER (2006) Minireview: pharmacogenetics and beyond: the interaction of therapeutic response, beta-cell physiology, and genetics in diabetes. Endocrinology 147:2657–2663

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Edghill, E.L., Hattersley, A.T. (2008). Genetic Disorders of the Pancreatic Beta Cell and Diabetes (Permanent Neonatal Diabetes and Maturity-Onset Diabetes of the Young). In: Seino, S., Bell, G.I. (eds) Pancreatic Beta Cell in Health and Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-75452-7_19

Download citation

Publish with us

Policies and ethics