Advertisement

Incretins and Regulation of Insulin Secretion

  • Michael A. Nauck
  • Juris J. Meier

Abstract

The incretin effect is the phenomenon whereby oral glucose elicits a greater insulin secretory response than an intravenous administration of glucose, even if the same glycemic profile is obtained (“isoglycemia”) or even exceeded. The incretin effect mainly is the results of the secretion, from gut endocrine cells, of incretin hormones, which is stimulated by the ingestion and absorption of nutrients. The main incretin hormone is gastric inhibitory polypeptide (glucose-dependent insulinotropic polypeptide, GIP), produced in and secreted from upper intestinal K cells. A second incretin hormone, glucagon-like peptide-1 (GLP-1), is synthesized mainly in lower intestinal L cells. Both incretin hormones stimulate insulin secretion by interacting with specific receptors on endocrine pancreatic beta cells. This augmentation is prominent at high glucose concentrations, but stops at glucose concentrations slightly below fasting values. In patients with type 2 diabetes, the incretin effect is reduced and the reason is that GIP has lost most of its insulinotropic activity. GLP-1, on the other hand, has preserved activity, even in patients with type 2 diabetes. In addition to its insulinotropic activity, it also suppresses glucagon, retards gastric emptying, reduces appetite and food intake, and can inhibit beta-cell apoptosis and promote beta-cell regeneration and neogenesis. Therefore, these properties of GLP-1 can be exploited to treat type 2 diabetes, both in the form of incretin mimetics (GLP-1 receptor agonists) and DPP-4 inhibitors (preventing degradation and inactivation of incretin hormones by the proteolytic enzyme dipeptidyl peptidase-4).

Keywords

Insulin Secretion Gastric Emptying Gastric Inhibitory Polypeptide Incretin Hormone Incretin Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seltzer HS, Allen EW, Herron AL Jr, Brennan MT (1967) Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest 46:323–335PubMedGoogle Scholar
  2. 2.
    Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Frank BH, Galloway JA, Van Cauter E. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 1988;318:1231–1239PubMedGoogle Scholar
  3. 3.
    Elrick H, Stimmler L, Hlad CJ, Arai Y (1964) Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 24:1076–1082PubMedGoogle Scholar
  4. 4.
    McIntyre N, Holdsworth CD, Turner DS (1965) Intestinal factors in the control of insulin secretion. J Clin Endocrinol 25:1317–1324Google Scholar
  5. 5.
    Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, Creutzfeldt W. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986;63:492–498PubMedGoogle Scholar
  6. 6.
    Creutzfeldt W (1979) The incretin concept today. Diabetologia 16:75–85PubMedGoogle Scholar
  7. 7.
    Creutzfeldt W, Nauck M (1992) Gut hormones and diabetes mellitus. Diabetes/Metab Rev 8:149–177Google Scholar
  8. 8.
    Moore B, Edie ES, Abram JH (1906) On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochem J 1:28–38PubMedGoogle Scholar
  9. 9.
    Berson SA, Yalow RS (1962) Immunoassay of plasma insulin. Ciba Coll Endocrinol 41:182–201Google Scholar
  10. 10.
    Shapiro ET, Tillil H, Miller MA, Frank BH, Galloway JA, Rubenstein AH, Polonsky KS. Insulin secretion and clearance. Comparison after oral and intravenous glucose. Diabetes 1987;36:1365–1371PubMedGoogle Scholar
  11. 11.
    Tillil H, Shapiro ET, Miller A, Karrison T, Frank BH, Galloway JA, et al (1988) Dosedependent effects of oral and intravenous glucose on insulin secretion and clearance in normal humans. Am J Physiol (Endocrinol Metab) 254:E349–E357Google Scholar
  12. 12.
    Perley MJ, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 46:1954–1962PubMedGoogle Scholar
  13. 13.
    Shuster LT, Go VLW, Rizza RA, O’Brien PC, Service FJ (1988) Incretin effect due to increased secretion and decreased clearance of insulin in normal humans. Diabetes 37:200–203PubMedGoogle Scholar
  14. 14.
    Gibby OM, Hales CN (1983) Oral glucose decreases hepatic extraction of insulin. Br Med J 286:921–923Google Scholar
  15. 15.
    Nauck M, Stöckmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in Type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–54PubMedGoogle Scholar
  16. 16.
    Unger RH, Eisentraut AM (1969) Entero-insular axis. Arch Intern Med 123:261–266PubMedGoogle Scholar
  17. 17.
    Dupré J, Beck JC (1966) Stimulation of release of insulin by an extract of intestinal mucosa. Diabetes 15:555–559PubMedGoogle Scholar
  18. 18.
    Dupré J, Ross SA, Watson D, Brown JC (1973) Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37:826–828PubMedGoogle Scholar
  19. 19.
    Nauck MA, Büsing M, Ørskov C, Siegel EG, Talartschik J, Baartz A, Baartz T, Hopt UT, Becker HD, Creutzfeldt W. Preserved incretin effect in type 1 diabetic patients with end-stage nephropathy treated by combined heterotopic pancreas and kidney transplantation. Acta Diabetol 1993;30:39–45PubMedGoogle Scholar
  20. 20.
    Ahren B (2000) Autonomic regulation of islet hormone secretion-implications for health and disease. Diabetologia 43(4):393–410PubMedGoogle Scholar
  21. 21.
    Clark JDA, Wheatley T, Brons IGM, Bloom SR, Calne RY (1989) Studies of the enteroinsular axis following pancreas transplantation in man: Neural or hormonal control? Diabetic Med 6:813–817PubMedGoogle Scholar
  22. 22.
    Creutzfeldt W, Feurle G, Ketterer H (1970) Effect of gastrointestinal hormones on insulin and glucagon secretion. N Engl J Med 282(20):1139–1141PubMedGoogle Scholar
  23. 23.
    Brown JC, Dryburgh JR (1971) A gastric inhibitory polypeptide II. The complete amino acid sequence. Can J Biochem 49:867–872PubMedGoogle Scholar
  24. 24.
    Pederson RA, Brown JC (1976) The insulinotropic action of gastric inhibitory polypeptide in the perfused rat pancreas. Endocrinology 99:780–785PubMedGoogle Scholar
  25. 25.
    Pederson RA, Schubert HE, Brown JC (1975) Gastric inhibitory polypeptide. Its physiologic release and insulinotropic action in the dog. Diabetes 24:1050–1056PubMedGoogle Scholar
  26. 26.
    Pederson RA, Brown JC (1978) Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secreton from the perfused rat pancreas. Endocrinology 103:610–615PubMedGoogle Scholar
  27. 27.
    Brown JC (1982) Gastric inhibitory polypeptide. Springer, Berlin HeidelbergGoogle Scholar
  28. 28.
    Lund PK, Goodman RH, Dee PC, Habener JF (1982) Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc Natl Acad Sci USA 79:345–349PubMedGoogle Scholar
  29. 29.
    Bell GI, Stanterre RF, Mullenbach GT (1983) Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 302:716–718PubMedGoogle Scholar
  30. 30.
    Schmidt WE, Siegel EG, Creutzfeldt W (1985) Glucagon-like peptide 1 but not glucagon-like peptide 2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia 28:704–707PubMedGoogle Scholar
  31. 31.
    Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619PubMedGoogle Scholar
  32. 32.
    Ørskov C, Holst JJ, Seier-Poulsen S, Kirkegaard P (1987) Pancreatic and intestinal processing of proglucagon in man. Diabetologia 30:874–881PubMedGoogle Scholar
  33. 33.
    Holst JJ, Ørskov C, Vagn-Nielsen O, Schwartz TW (1987) Truncated glucagonlike peptide 1, an insulin-releasing hormone from the distal gut. FEBS Lett 211: 169–174PubMedGoogle Scholar
  34. 34.
    Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF (1992) Insulinotropic action of glucagon-like peptide 1 (7-37) in diabetic and non-diabetic subjects. Diabetes Care 15:270–276PubMedGoogle Scholar
  35. 35.
    Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 [7-36]: a physiological incretin in man. Lancet 2:1300–1304PubMedGoogle Scholar
  36. 36.
    Holst JJ (1994) Glucagonlike peptide 1: a newly discovered gastrointestinal hormone. Gastroenterology 107:1848–1855PubMedGoogle Scholar
  37. 37.
    Drucker DJ (2001) Minireview: the glucagon-like peptides. Endocrinology 142: 521–527PubMedGoogle Scholar
  38. 38.
    Nauck MA (1997) Glucagonlike peptide 1. Curr Opin Endocrinol Diabetes 4:256–261Google Scholar
  39. 39.
    Meier JJ, Nauck MA (2005) Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev 21:91–117PubMedGoogle Scholar
  40. 40.
    Sarson DL, Bryant MG, Bloom SR (1980) A radioimmunoassay of gastric inhibitory polypeptide in human plasma. J Endocrinol 85:487–496PubMedGoogle Scholar
  41. 41.
    Ebert R, Creutzfeldt W (1980) Decreased GIP secretion through impairment of absorption. In: Wimersma Greidanus TB (ed) Frontiers in Hormone Research. Karger, Basel, 192–201Google Scholar
  42. 42.
    Cleator IG, Gourlay RH (1975) Release of immunoreactive gastric inhibitory polypeptide (IR-GIP) by oral ingestion of food substances. Am J Surg 130:128–135PubMedGoogle Scholar
  43. 43.
    Sarson DL, Wood SM, Kansal PC, Bloom SR (1984) Glucose-dependent insulinotropic polypeptide augmentation of insulin: physiology or pharmacology? Diabetes 33:389–393PubMedGoogle Scholar
  44. 44.
    Nauck M, Schmidt WE, Ebert R, Strietzel J, Cantor P, Hoffmann G, Creutzfeldt W. Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J Clin Endocrinol Metab 1989;69:654–662PubMedGoogle Scholar
  45. 45.
    Buchan AMJ, Polak JM, Capella C, Solcia E, Pearse AGE (1978) Electron immunocytochemical evidence of the K cell localisation of gastric inhibitory polypeptide (GIP) in man. Histochemistry 56:37–44PubMedGoogle Scholar
  46. 46.
    Krarup T, Holst JJ, Larsen KL (1985) Responses and heterogeneity of IR-GIP after intraduodenal glucose and fat. Am J Physiol 249:E195–E200PubMedGoogle Scholar
  47. 47.
    Thomas FB, Mazzaferri EL, Crockett SE, Mekhjian HS, Gruemer HD, Cataland S (1976) Stimulation of secretion of gastric inhibitory polypeptide and insulin by intraduodenal amino acid perfusion. Gastroenterology 70:523–527PubMedGoogle Scholar
  48. 48.
    Thomas FB, Sinar D, Mazzaferri EL, Cataland S, Mekhjian HS, Caldwell JH, Fromkes JJ. Selective release of gastric inhibitory polypeptide release by intraduodenal amino acid perfusion in man. Gastroenterology 1978;74:1261–1265PubMedGoogle Scholar
  49. 49.
    Tseng CC, Jarboe LA, Landau SB, Wolfe MM (1993) Glucose-dependent insulinotropic peptide: structure of the precursor and tissue-specific expression in rat. Proc Natl Acad Sci USA 90:1992–1996PubMedGoogle Scholar
  50. 50.
    Meier JJ, Nauck MA, Schmidt WE, Gallwitz B (2002) Gastric inhibitory polypeptide: the neglected incretin revisited. Regul Pept 107:1–13PubMedGoogle Scholar
  51. 51.
    Krarup T (1988) Immunoreactive gastric inhibitory polypeptide. Endocrine Rev 9:122–133Google Scholar
  52. 52.
    Deacon CF, Nauck MA, Meier J, Hücking K, Holst JJ (2000) Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 85:3575–3581PubMedGoogle Scholar
  53. 53.
    Meier JJ, Nauck MA (2004) Clinical endocrinology and metabolism. Glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide. Best Pract Res Clin Endocrinol Metab 18:587–606PubMedGoogle Scholar
  54. 54.
    Meier JJ, Nauck MA, Kranz D, Holst JJ, Deacon CF, Gaeckler D, Schmidt WE, Gallwitz B. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 2004;53:654–662PubMedGoogle Scholar
  55. 55.
    Gremlich S, Porret A, Hani EH, Cherif D, Vionnet N, Froguel P, Thorens B. Cloning, functional expression, and chromosomal localization of the human pancreatic islet glucose-dependent insulinotropic polypeptide receptor. Diabetes 1995;44: 1202–1208PubMedGoogle Scholar
  56. 56.
    Volz A, Göke R, Lankat Buttgereit B, Fehmann HC, Bode HP, Göke B (1995) Molecular cloning, functional expression, and signal transduction of the GIP-receptor cloned from a human insulinoma. FEBS Lett 373:23–29PubMedGoogle Scholar
  57. 57.
    Wheeler MB, Gelling RW, McIntosh CHS, Georgiou J, Brown JC, Pederson RA (1995) Functional expression of the rat pancreatic islet glucose-dependent insulinotropic polypeptide receptor: ligand binding and intracellular signaling properties. Endocrinology 136:4629–4639PubMedGoogle Scholar
  58. 58.
    Stoffel M, Fernald AA, Le Beau MM, Bell GI (1995) Assignment of the gastric inhibitory polypeptide receptor gene (GIPR) to chromosome band 19q13.2–q13.3 by fluorescence in situ hybridization. Genomics 28:607–609PubMedGoogle Scholar
  59. 59.
    Dupré J, Caissignac Y, McDonald TJ, Van Vliet S (1991) Stimulation of glucagon secretion by gastric inhibitory polypeptide in patients with hepatic cirrhosis and hyperglucagonemia. J Clin Endocrinol Metab 72:125–129PubMedGoogle Scholar
  60. 60.
    Meier JJ, Gallwitz B, Siepmann N, Holst JJ, Deacon CF, Schmidt WE, Nauck MA. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 2003;46:798–801PubMedGoogle Scholar
  61. 61.
    Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, et al (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8(7):738–742PubMedGoogle Scholar
  62. 62.
    Gault VA, O’Harte FP, Flatt PR (2003) Glucose-dependent insulinotropic polypeptide (GIP): anti-diabetic and anti-obesity potential? Neuropeptides 37:253–263PubMedGoogle Scholar
  63. 63.
    Ørskov C, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV, Holst JJ (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119:1467–1475PubMedGoogle Scholar
  64. 64.
    Eissele R, Göke R, Willemer S, Harthus HP, Vermeer H, Arnold R, Göke B. Glucagonlike peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest 1992;22:283–291PubMedGoogle Scholar
  65. 65.
    Holst JJ (1997) Enteroglucagon. Annu Rev Physiol 59:257–271PubMedGoogle Scholar
  66. 66.
    Ørskov C, Bersani M, Johnsen AH, Hojrup P, Holst JJ (1989) Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J Biol Chem 264:12826–12829PubMedGoogle Scholar
  67. 67.
    Ørskov C, Rabenhøj L, Wettergren A, Kofod H, Holst JJ (1994) Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide 1 in humans. Diabetes 43:535–539PubMedGoogle Scholar
  68. 68.
    Weir GC, Mojsov S, Hendrick GK, Habener JF (1989) Glucagonlike peptide I (7–37) actions on endocrine pancreas. Diabetes 38:338–342PubMedGoogle Scholar
  69. 69.
    Nauck MA, Weber I, Bach I, Richter S, Ørskov C, J.J. H, Schmiegel W. Normalization of fasting glycaemia by intravenous GLP-1 ([7–36 amide] or [7–37]) in Type 2-diabetic patients. Diabetic Med 1998;15:937–945PubMedGoogle Scholar
  70. 70.
    Ørskov C, Wettergren A, Holst JJ (1996) Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 31:665–670PubMedGoogle Scholar
  71. 71.
    Herrmann C, Göke R, Richter G, Fehmann HC, Arnold R, Göke B (1995) Glucagonlike peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 56:117–126PubMedGoogle Scholar
  72. 72.
    Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Host JJ (1995) Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in type 2-diabetic patients and in healthy subjects. Diabetes 44:1126–1131PubMedGoogle Scholar
  73. 73.
    Deacon CF, Åhren B, Holst JJ (2004) Inhibitors of dipeptidyl peptidase IV: a novel approach for the prevention and treatment of Type 2 diabetes? Expert Opin Invest Drugs 13:1091–1102Google Scholar
  74. 74.
    Thorens B, Porret A, Buhler L, Deng SP, Morel P, Widmann C (1993) Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9–39) an antagonist of the receptor. Diabetes 42:1678–1682PubMedGoogle Scholar
  75. 75.
    Wei Y, Mojsov S (1995) Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett 358:219–224PubMedGoogle Scholar
  76. 76.
    Drucker DJ (2002) Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122:531–544PubMedGoogle Scholar
  77. 77.
    Holst JJ (1999) Glucagon-like peptide 1 (GLP-1): an intestinal hormone, signalling nutritional abundance, with an unusual therapeutic potential. Trend Endocrinol Metab 10:229–235Google Scholar
  78. 78.
    Nauck MA, Meier JJ, Creutzfeldt W (2003) Incretins and their analogues as new antidiabetic agents. Drug News Perspect 16:413–422PubMedGoogle Scholar
  79. 79.
    Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Ørskov C, Ritzel R, Schmiegel WH. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulino-tropic effects in healthy humans. Am J Physiol (Endocrinol Metab) 1997;273:E981–988Google Scholar
  80. 80.
    Nauck MA (1999) Is glucagon-like peptide 1 an incretin hormone? Diabetologia 42:373–379PubMedGoogle Scholar
  81. 81.
    Layer P, Holst JJ, Grandt D, Goebell H (1995) Ileal release of glucagon-like peptide-1 (GLP-1). Association with inhibition of gastric acid secretion in humans. Dig Dis Sci 40:1074–1082PubMedGoogle Scholar
  82. 82.
    Ebert R, Unger H, Creutzfeldt W (1983) Preservation of incretin activity after removal of gastric inhibitory polypeptide (GIP) from rat gut extracts by immunoadsorption. Diabetologia 24:449–454PubMedGoogle Scholar
  83. 83.
    Nauck MA, Bartels E, Ørskov C, Ebert R, Creutzfeldt W (1993) Additive insuli-notropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7–36) amide infused at near-physiological insuli-notropic hormone and glucose concentrations. J Clin Endocrinol Metab 76: 912–917PubMedGoogle Scholar
  84. 84.
    Pederson RA, Brown JC (1979) Effect of cholecystokinin, secretin, and gastric inhibitory polypeptide on insulin release from the isolated perfused rat pancreas. Can J Physiol Pharmacol 57:1233–1237PubMedGoogle Scholar
  85. 85.
    Szecowka J, Lins PE, Efendic S (1982) Effects of cholecystokinin, gastric inhibitory polypeptide, and secretin on insulin and glucagon secretion in rats. Endocrinology 110:1268–1272PubMedGoogle Scholar
  86. 86.
    Ahren B, Hedner P, Lundquist I (1983) Interaction of gastric inhibitory polypeptide (GIP) and cholecystokinin (CCK-8) with basal and stimulated insulin secretion in mice. Acta Endocrinol (Copenh) 102:96–102PubMedGoogle Scholar
  87. 87.
    Jensen SL, Rehfeld JF, Holst JJ, Nielsen OV, Fahrenkrug J, Schaffalitzky de Muckadell OB (1981) Secretory effects of cholecystokinins on the isolated perfused porcine pancreas. Acta Physiol Scand 111:225–231PubMedGoogle Scholar
  88. 88.
    Rushakoff RA, Goldfine ID, Beccaria LJ, Mathur A, Brand RJ, Liddle RA (1993) Reduced postprandial cholecystokinin (CCK) secretion in patients with noninsulin-dependent diabetes mellitus: evidence for a role for CCK in regulating postprandial hyperglycemia. J Clin Endocrinol Metab 76:489–493PubMedGoogle Scholar
  89. 89.
    Rabinovitch A, Dupre J (1974) Effects of the gastric inhibitory polypeptide present in impure pancreozymin-cholecystokinin on plasma insulin and glucagon in the rat. Endocrinology 94:1139–1144PubMedGoogle Scholar
  90. 90.
    Rehfeld JF (2004) Clinical endocrinology and metabolism. Cholecystokinin. Best Pract Res Clin Endocrinol Metab 18:569–586Google Scholar
  91. 91.
    Reimers J, Nauck M, Creutzfeldt W, Strietzel J, Ebert R, Cantor P, Hoffmann G. Lack of insulinotropic effect of endogenous and exogenous cholecystokinin in man. Diabetologia 1988;31:271–280PubMedGoogle Scholar
  92. 92.
    Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA (1985) Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 75:1144–1152PubMedGoogle Scholar
  93. 93.
    Schmidt WE, Creutzfeldt W, Schleser A, Roy Choudhury A, Nustede R, Höcker M, Nitsche R, Soestmann H, Rovati LC, Fölsch UR. Role of CCK in regulation of pancreaticobiliary functions and GI motility in humans: Effects of loxiglumide. Am J Physiol (Gastroenterology) 1991;260:G 197–206Google Scholar
  94. 94.
    Hildebrand P, Ensinck JW, Ketterer S, Delco F, Mossi S, Bangerter U, Beglinger C. Effect of a cholecystokinin antagonist on meal-stimulated insulin and pancreatic polypeptide release in humans. J Clin Endocrinol Metab 1991;72: 1123–1129PubMedGoogle Scholar
  95. 95.
    Liddle RA, Gertz BJ, Kanayama S, Beccaria L, Gettys TW, Taylor IL, Rushakoff RJ, Williams VC, Coker LD. Regulation of pancreatic endocrine function by cholecystokinin: Studies with MK-29, a nonpeptide cholecystokinin receptor antagonist. J Clin Endocrinol Metab 1990;70:1312–1318PubMedGoogle Scholar
  96. 96.
    Liddle RA, Rushakoff RJ, Morita ET, Beccaria L, Carter JD, Goldfine ID (1988) Physiological role for cholecystokinin in reducing postprandial hyperglycemia in humans. J Clin Invest 81:1675–1681PubMedGoogle Scholar
  97. 97.
    Rehfeld JF, Stadil F (1973) The effect of gastrin on basal-and glucose-stimulated insulin secretion in man. J Clin Invest 52:1415–1426PubMedGoogle Scholar
  98. 98.
    Schmidt WE, Schenk S, Nustede R, Holst JJ, Folsch UR, Creutzfeldt W (1994) Cholecystokinin is a negative regulator of gastric acid secretion and postprandial release of gastrin in humans. Gastroenterology 107:1610–1620PubMedGoogle Scholar
  99. 99.
    Unger RH, Ketterer H, Dupre J, Eisentraut AM (1967) The effects of secretin, pancreozymin, and gastrin on insulin and glucagon secretion in anesthetized dogs. J Clin Invest 46:630–645PubMedGoogle Scholar
  100. 100.
    Dupre J, Curtis JD, Unger RH, Waddell RW, Beck JC (1969) Effects of secretin, pancreozymin, or gastrin on the response of the endocrine pancreas to administration of glucose or arginine in man. J Clin Invest 48:745–757PubMedGoogle Scholar
  101. 101.
    Kaneto A, Tasaka Y, Kosaka K, Nakao K (1969) Stimulation of insulin secretion by the C-terminal tetrapeptide amide of gastrin. Endocrinology 84:1098–1106PubMedGoogle Scholar
  102. 102.
    Jarrett RJ, Cohen NM (1967) Intestinal hormones and plasma-insulin. Some observations on glucagon, secretin, and gastrin. Lancet 2(7521):861–863PubMedGoogle Scholar
  103. 103.
    Lazarus NR, Voyles NR, Devrim S, Tanese T, Recant L (1968) Extra-gastrointestinal effects of secretin, gastrin, and pancreozymin. Lancet 2(7562):248–250PubMedGoogle Scholar
  104. 104.
    Meier JJ, Nauck MA, Pott A, Heinze K, Götze O, Bulut K, Schmidt WE, Gallwitz B, Holst JJ. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology 2006; 130:44–54PubMedGoogle Scholar
  105. 105.
    Hayes JR, Ardill J, Buchanan KD (1975) Gastrin and insulin release. Diabetologia 11:89–92PubMedGoogle Scholar
  106. 106.
    Wang CC, Grossman MI (1951) Physiological determination of release of secretin and pancreozymin from intestine of dogs with transplanted pancreas. Am J Physiol 164:527–545PubMedGoogle Scholar
  107. 107.
    Ahren B, Lundquist I (1981) Effects of vasoactive intestinal polypeptide (VIP), secretin and gastrin on insulin secretion in the mouse. Diabetologia 20:54–59PubMedGoogle Scholar
  108. 108.
    Glaser B, Shapiro B, Glowniak J, Fajans SS, Vinik AI (1988) Effects of secretin on the normal and pathological beta-cell. J Clin Endocrinol Metab 66:1138–1143PubMedGoogle Scholar
  109. 109.
    Lerner RL (1979) Augmented insulin responses to glucose after secretin priming in diabetic subjects. J Clin Endocrinol Metab 48:462–466PubMedGoogle Scholar
  110. 110.
    Chisholm DJ, Young JD, Lazarus L (1969) The gastrointestinal stimulus to insulin release. I. Secretin. J Clin Invest 48:1453–1460PubMedGoogle Scholar
  111. 111.
    Filipsson K, Kvist-Reimer M, Ahren B (2001) The neuropeptide pituitary adenylate cyclase-activating polypeptide and islet function. Diabetes 50:1959–1969PubMedGoogle Scholar
  112. 112.
    Filipsson K, Holst JJ, Åhren B (2000) PACAP contributes to insulin secretion after gastric glucose gavage in mice. Am J Physiol (Regul Integr Comp Physiol) 279: R424–R432Google Scholar
  113. 113.
    Qualmann C, Nauck MA, Holst JJ, Ørskov C, Creutzfeldt W (1995) Insulinotropic actions of intravenous glucagon-like peptide-1 (GLP-1)[7–36 amide] in the fasting state in healthy subjects. Acta Diabetol 32:13–16PubMedGoogle Scholar
  114. 114.
    Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, Ritzel R, Hüfner M, Schmiegel WH. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 2002;87:1239–1246PubMedGoogle Scholar
  115. 115.
    Gromada J, Rorsman P, Dissing S, Wulff BS (1995) Stimulation of cloned human glucagon-like peptide 1 receptor expressed in HEK 293 cells induces cAMP-dependent activation of calcium-induced calcium release. FEBS Lett 373:182–186PubMedGoogle Scholar
  116. 116.
    Gromada J, Dissing S, Bokvist K, Renström E, Froekjaer-Jensen J, Wulff BS, Rorsman P. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting ßTC3-cells by enhancement of intracellular calcium mobilization. Diabetes 1995;44: 767–774PubMedGoogle Scholar
  117. 117.
    Gromada J, Holst JJ, Rorsman P (1998) Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflügers Arch Eur J Physiol 435:583–594Google Scholar
  118. 118.
    Gromada J, Ding WG, Barg S, Renstrom E, Rorsman P (1997) Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Arch 434:515–524PubMedGoogle Scholar
  119. 119.
    Vilsbøll T, Krarup T, Madsbad S, Holst JJ (2001) No reactive hypoglycaemia in Type 2 diabetic patients after subcutaneous administration of GLP-1 and intravenous glucose. Diabet Med 18:144–149PubMedGoogle Scholar
  120. 120.
    Toft-Nielsen M, Madsbad S, Holst JJ (1998) Exaggerated secretion of glucagon-like peptide-1 (GLP-1) could cause reactive hypoglycaemia. Diabetologia 41:1180–1186PubMedGoogle Scholar
  121. 121.
    Degn KB, Brock B, Juhl CB, Djurhuus CB, Grubert J, Kim D, Han J, Taylor K, Fineman M, Schmitz O. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and counterregulation during hypoglycemia. Diabetes 2004;53:2397–2403PubMedGoogle Scholar
  122. 122.
    Nauck M, El-Ouaghlidi A, Hompesch M, Jacobsen J, Elbrønd B (2003) No impairment of hypoglycemia counterregulation via glucagon with NN2211, a GLP-1 derivative, in subjects with type 2 diabetes (abstract 550-P). Diabetes 52(Suppl. 1):A128Google Scholar
  123. 123.
    Nauck MA, Meier JJ (2005) Glucagon-like peptide 1 (GLP-1) and its derivatives in the treatment of diabetes. Regul Pept 124(Suppl):135–148Google Scholar
  124. 124.
    Horowitz M, O’Donovan D, Jones KL, Feinle C, Rayner CK, Samsom M (2002) Gastric emptying in diabetes: clinical significance and treatment. Diabet Med 19:177–194PubMedGoogle Scholar
  125. 125.
    Vecht J, Masclee AA, Lamers CB (1997) The dumping syndrome. Current insights into pathophysiology, diagnosis and treatment. Scand J Gastroenterol 223(Suppl): 21–27Google Scholar
  126. 126.
    Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ (1993) Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 38:665–673PubMedGoogle Scholar
  127. 127.
    Meier JJ, Gallwitz B, Salmen S, Goetze O, Holst JJ, Schmidt WE, Nauck MA. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab 2003;88:2719–2725PubMedGoogle Scholar
  128. 128.
    Wettergren A, Petersen H, Orskov C, Christiansen J, Sheikh SP, Holst JJ (1994) Glucagon-like Peptide-1 7–36 amide and peptide YY from the L-cell of the ileal mucosa are potent inhibitors of vagally induced gastric acid secretion in man. Scand J Gastroenterol 29:501–505PubMedGoogle Scholar
  129. 129.
    Meier JJ, Kemmeries G, Holst JJ, Nauck MA (2005) Erythromycin antagonizes the deceleration of gastric emptying by glucagon-like peptide 1 and unmasks its insulinotropic effect in healthy subjects. Diabetes 54:2212–2218PubMedGoogle Scholar
  130. 130.
    Schirra J, Kuwert P, Wank U, Leicht P, Arnold R, Göke B, Katschinski M. Differential effects of subcutaneous GLP-1 on gastric emptying, antroduodenal motility, and pancreatic function in men. Proc Assoc Am Physicians 1997;109:84–97PubMedGoogle Scholar
  131. 131.
    Schirra J, Houck P, Wank U, Arnold R, Goke B, Katschinski M (2000) Effects of glucagon-like peptide-1(7–36)amide on antro-pyloro-duodenal motility in the interdigestive state and with duodenal lipid perfusion in humans. Gut 46:622–631PubMedGoogle Scholar
  132. 132.
    Schirra J, Wank U, Arnold R, Goke B, Katschinski M (2002) Effects of glucagon-like peptide-1(7–36)amide on motility and sensation of the proximal stomach in humans. Gut 50:341–348PubMedGoogle Scholar
  133. 133.
    Meier JJ, Gallwitz B, Schmidt WE, Nauck MA (2002) Glucagon-like peptide 1 as a regulator of food intake and body weight: therapeutic perspectives. Eur J Pharmacol 440:269–279PubMedGoogle Scholar
  134. 134.
    Imeryuz N, Yegen BC, Bozkurt A, Coskun T, Villanueva Penacarrillo ML, Ulusoy NB (1997) Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol 273:G920–G927PubMedGoogle Scholar
  135. 135.
    Wettergren A, Wojdemann M, Meisner S, Stadil F, Holst JJ (1997) The inhibitory effect of glucagon-like peptide-1 (GLP-1) 7–36 amide on gastric acid secretion in humans depends on an intact vagal innervation. Gut 40:597–601PubMedGoogle Scholar
  136. 136.
    Meier JJ, Goetze O, Anstipp J, Hagemann D, Holst JJ, Schmidt WE, Gallwitz B, Nauck MA. Gastric inhibitory polypeptide does not inhibit gastric emptying in humans. Am J Physiol (Endocrinol Metab) 2004;286:E 621–625Google Scholar
  137. 137.
    Meier JJ, Nauck MA, Kask B, Holst JJ, Deacon CF, Schmidt WE, Gallwitz B. Influence of gastric inhibitory polypeptide on pentagastrin-stimulated gastric acid secretion in patients with type 2 diabetes and healthy controls. World J Gastroenterol 2006; 12:1874–1880PubMedGoogle Scholar
  138. 138.
    Schick RR, Zimmermann JP, vorm Walde T, Schusdziarra V, Classen M (1992) Glucagon-like Peptide (GLP)-1(7–36)-amide: A central suppressor of food intake in rats (abstract). Gastroenterol 102:A756Google Scholar
  139. 139.
    Turton MD, D OS, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379:69–72PubMedGoogle Scholar
  140. 140.
    Szayna M, Doyle ME, Betkey JA, Holloway HW, Spencer RG, Greig NH, Egan JM. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 2000;141:1936–1941PubMedGoogle Scholar
  141. 141.
    Flint A, Raben A, Astrup A, Holst JJ (1998) Glucagon-like peptide-1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101:515–520PubMedGoogle Scholar
  142. 142.
    Gutzwiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, Winterhalder R, Conen D, Beglinger C. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 1999;44:81–86PubMedGoogle Scholar
  143. 143.
    Zander M, Madsbad S, Madsen JL, Holst JJ (2002) Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359:824–830PubMedGoogle Scholar
  144. 144.
    Geliebter A (1988) Gastric distension and gastric capacity in relation to food intake in humans. Physiol Behav 44:665–668PubMedGoogle Scholar
  145. 145.
    Ørskov C, Poulsen SS, Møller M, Holst JJ (1996) Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagonlike peptide I. Diabetes 45:832–835PubMedGoogle Scholar
  146. 146.
    Schick RR, Zimmermann JP, vorm Walde T, Schusdziarra V (2003) Peptides that regulate food intake: glucagon-like peptide 1-(7–36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am J Physiol (Regul Integr Comp Physiol) 284:R1427–R1435Google Scholar
  147. 147.
    Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005;28:1083–1091PubMedGoogle Scholar
  148. 148.
    DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD (2005) Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformintreated patients with type 2 diabetes. Diabetes Care 28:1092–1100PubMedGoogle Scholar
  149. 149.
    Buse JB, Henry RR, Han J, Kim DD, Fineman M, Baron AD, for the exenatide-113 clinical study group. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004;27:2628–2635PubMedGoogle Scholar
  150. 150.
    Henry RR, Ratner RE, Stonehouse AH, Guan X, Poon T, Malone JK, Kim DD, Kendall DM. Exenatide maintained glycemic control with associated weight reduction over 2 years in patients with type 2 diabetes (abstract 485-P). Diabetes 2006;55(Suppl. 1):A 116Google Scholar
  151. 151.
    Despres JP, Golay A, Sjostrom L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121–2134PubMedGoogle Scholar
  152. 152.
    Vella A, Rizza RA (2004) Extrapancreatic effects of GIP and GLP-1. Horm Metab Res 36:830–836PubMedGoogle Scholar
  153. 153.
    Delgado E, Luque MA, Alcantara A, Trapote MA, Clemente F, Galera C, Valverde I, Villanueva Penacarrillo ML. Glucagon-like peptide-1 binding to rat skeletal muscle. Peptides 1995;16:225–229PubMedGoogle Scholar
  154. 154.
    Villanueva Penacarrillo ML, Alcantara AI, Clemente F, Delgado E, Valverde I (1994) Potent glycogenic effect of GLP-1(7–36)amide in rat skeletal muscle. Diabetologia 37:1163–1166PubMedGoogle Scholar
  155. 155.
    Egan JM, Montrose Rafizadeh C, Wang Y, Bernier M, Roth J (1994) Glucagon-like peptide-1(7–36) amide (GLP-1) enhances insulin-stimulated glucose metabolism in 3T3-L1 adipocytes: one of several potential extrapancreatic sites of GLP-1 action. Endocrinology 135:2070–2075PubMedGoogle Scholar
  156. 156.
    Fürnsinn C, Ebner K, Waldhäusl W (1995) Failure of GLP-1(7–36)amide to affect glycogenesis in rat skeletal muscle. Diabetologia 38:864–867PubMedGoogle Scholar
  157. 157.
    Nakagawa Y, Kawai K, Suzuki H, Ohasi S, Yamashita K (1997) Glucagon-like peptide-1(7–36) amide and glycogen synthesis in the liver. Diabetologia 40:1241–1242Google Scholar
  158. 158.
    Yang H, Egan JM, Wang Y, Moyes CD, Roth J, Montrose MH, Montrose-Rafizadeh C. GLP-1 action in L6 myotubes is via a receptor different from the pancreatic GLP-1 receptor. Am J Physiol (Cardiology) 1998;275:C 675–683Google Scholar
  159. 159.
    Luque MA, Gonzalez N, Marquez L, Acitores A, Redondo A, Morales M, Valverde I, Villanueva-Penacarrillo ML. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes. J Endocrinol 2002;173:465–473PubMedGoogle Scholar
  160. 160.
    D’Alessio D, Kahn SE, Leusner CR, Ensinck JW (1994) Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J Clin Invest 93:2263–2266PubMedGoogle Scholar
  161. 161.
    D’Alessio DA, Prigeon RL, Ensinck JW (1995) Enteral enhancement of glucose disposition by both insulin-dependent and insulin-independent processes. A physiological role of glucagon-like peptide I. Diabetes 44:1433–1437PubMedGoogle Scholar
  162. 162.
    Prigeon RL, Quddusi S, Paty B, D’Alessio DA (2003) Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. Am J Physiol (Endocrinol Metab) 285:E701–E707Google Scholar
  163. 163.
    Vella A, Shah P, Basu R, Basu A, Holst JJ, Rizza RA (2000) Effect of glucagon-like peptide 1(7–36) amide on glucose effectiveness and insulin action in people with type 2 diabetes. Diabetes 49:611–617PubMedGoogle Scholar
  164. 164.
    Vella A, Shah P, Basu R, Basu A, Camilleri M, Schwenk FW, Holst JJ, Rizza RA. Effect of glucagon-like peptide-1(7–36)-amide on initial splanchnic glucose uptake and insulin action in humans with type 1 diabetes. Diabetes 2001;50:565–572PubMedGoogle Scholar
  165. 165.
    Vella A, Shah P, Reed AS, Adkins AS, Basu R, Rizza RA (2002) Lack of effect of exendin-4 and glucagon-like peptide-1-(7,36)-amide on insulin action in nondiabetic humans. Diabetologia 45:1410–1415PubMedGoogle Scholar
  166. 166.
    Deacon CF, Plamboeck A, Moller S, Holst JJ (2002) Glucagon-like peptide-1-(9-36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion. Am J Physiol (Endocrinol Metab) 282:E873–E879Google Scholar
  167. 167.
    Nikolaidis LA, Elahi D, Shen YT, Shannon RP (2005) Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol (Heart Circ Physiol) 289: H2401–H2408Google Scholar
  168. 168.
    Meier JJ, Gethmann A, Nauck MA, Götze O, Schmitz F, Deacon CF, Gallwitz B, Schmidt WE, Holst JJ. The glucagon-like peptide-1 metabolite GLP-1-(9–36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans. Am J Physiol (Endocrinol Metab) 2006;290:E 1118–1123Google Scholar
  169. 169.
    Deacon CF, Johnsen AH, Holst JJ (1995) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 80:952–957PubMedGoogle Scholar
  170. 170.
    Vahl TP, Paty BW, Fuller BD, Prigeon RL, D’Alessio DA (2003) Effects of GLP-1-(7–36)NH2, GLP-1-(7–37), and GLP-1-(9–36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J Clin Endocrinol Metab 88:1772–1779PubMedGoogle Scholar
  171. 171.
    Ørskov L, Holst J, Møller J, Ørskov C, Møller N, Alberti K, Schmitz O. GLP-1 does not acutely affect insulin sensitivity in healthy man. Diabetologia 1996;39:552–556Google Scholar
  172. 172.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedGoogle Scholar
  173. 173.
    Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMedGoogle Scholar
  174. 174.
    Meier JJ, Bhushan A, Butler PC (2006) The potential for stem cell therapy in diabetes. Pediatr Res 59:65R–73RPubMedGoogle Scholar
  175. 175.
    Rhodes CJ (2000) IGF-I and GH post-receptor signaling mechanisms for pancreatic beta-cell replication. J Mol Endocrinol 24:303–311PubMedGoogle Scholar
  176. 176.
    Drucker DJ, Ehrlich P, Asa SL, Brubaker PL (1996) Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci USA 93:7911–7916PubMedGoogle Scholar
  177. 177.
    Suarez-Pinzon WL, Yan Y, Power R, Brand SJ, Rabinovitch A (2005) Combination therapy with epidermal growth factor and gastrin increases beta-cell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes 54:2596–2601PubMedGoogle Scholar
  178. 178.
    Buteau J, Roduit R, Susini S, Prentki M (1999) Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 42:856–864PubMedGoogle Scholar
  179. 179.
    Buteau J, Spatz ML, Accili D (2006) Transcription factor FoxO1 mediates glucagonlike peptide-1 effects on pancreatic beta-cell mass. Diabetes 55:1190–1196PubMedGoogle Scholar
  180. 180.
    Xu G, Stoffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270–2276PubMedGoogle Scholar
  181. 181.
    Tourrel C, Bailbe D, Meile MJ, Kergoat M, Portha B (2001) Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 50:1562–1570PubMedGoogle Scholar
  182. 182.
    Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B (2002) Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 51:1443–1452PubMedGoogle Scholar
  183. 183.
    Stoffers DA, Desai BM, DeLeon DD, Simmons RA (2003) Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes 52:734–740PubMedGoogle Scholar
  184. 184.
    Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, Di Mario U, Perfetti R. Glucagonlike peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 2002;143:4397–4408PubMedGoogle Scholar
  185. 185.
    Zhou J, Wang X, Pineyro MA, Egan JM (1999) Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon-and insulin-producing cells. Diabetes 48:2358–2366PubMedGoogle Scholar
  186. 186.
    Hui H, Wright C, Perfetti R (2001) Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells. Diabetes 50:785–796PubMedGoogle Scholar
  187. 187.
    Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta cells are formed by self-duplication rather than stem-cell differentiation. Nature 429: 41–46PubMedGoogle Scholar
  188. 188.
    Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan DM, Perfetti R. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 2003;144:5149–5158PubMedGoogle Scholar
  189. 189.
    Hui H, Nourparvar A, Zhao X, Perfetti R (2003) Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A-and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 144:1444–1455PubMedGoogle Scholar
  190. 190.
    Trumper A, Trumper K, Horsch D (2002) Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in beta(INS-1)-cells. J Endocrinol 174:233–246PubMedGoogle Scholar
  191. 191.
    Kim SJ, Winter K, Nian C, Tsuneoka M, Koda Y, McIntosh CH (2005) Glucosedependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and downregulation of bax expression. J Biol Chem 280:22297–22307PubMedGoogle Scholar
  192. 192.
    Pospisilik JA, Martin J, Doty T, Ehses JA, Pamir N, Lynn FC, Piteau S, Demuth HU, McIntosh CH, Pederson RA. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 2003;52:741–750PubMedGoogle Scholar
  193. 193.
    Mu J, Woods J, Zhou YP, Roy RS, Li Z, Zycband E, Feng Y, Zhu L, Li C, Howard AD, Moller DE, Thornberry NA, Zhang BB. Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic ®-cell mass and function in a rodent model of type 2 diabetes. Diabetes 2006;55:1695–1704PubMedGoogle Scholar
  194. 194.
    Koehler JA, Drucker DJ (2006) Activation of glucagon-like peptide-1 receptor signaling does not modify the growth or apoptosis of human pancreatic cancer cells. Diabetes 55:1369–1379PubMedGoogle Scholar
  195. 195.
    Larsen MO, Rolin B, Sturis J, Wilken M, Carr RD, Pørksen N, Gotfredsen CF. Measurements of insulin responses as predictive markers of pancreatic beta-cell mass in normal and beta-cell-reduced lean and obese Gottingen minipigs in vivo. Am J Physiol (Endocrinol Metab) 2006;290:E 670–677. Epub 2005 Nov 2008Google Scholar
  196. 196.
    Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV (2005) Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med 353:249–254PubMedGoogle Scholar
  197. 197.
    Meier JJ, Butler AE, Galasso R, Butler PC (2006) Hyperinsulinemic hypoglycemia after gastric bypass surgery is not accompanied by islet hyperplasia or increased beta-cell turnover. Diabetes Care 29:1554–1559PubMedGoogle Scholar
  198. 198.
    Tseng C-C, Kieffer TJ, Jarboe LA, Usdin TB, Wolfe MM (1996) Postprandial stimulation of insulin release by glucose-dependent insulinotropic peptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J Clin Invest 98:2440–2445PubMedGoogle Scholar
  199. 199.
    Meier JJ, Goetze O, Anstipp J, Hagemann D, Holst JJ, Schmidt WE, Gallwitz B, Nauck MA. Gastric inhibitory polypeptide does not inhibit gastric emptying in humans. Am J Physiol (Endocrinol Metab) 2004;286:E 621–625Google Scholar
  200. 200.
    Gallwitz B, Witt M, Fölsch UR, Creutzfeldt W, Schmidt WE (1993) Binding specificity and signal transduction of receptors for glucagon-like peptide-1(7–36) amide and gastric inhibitory polypeptide on RINm5F insulinoma cells. J Mol Endocrinol 10:259–268PubMedGoogle Scholar
  201. 201.
    Polonsky K, Rubenstein AH (1984) C-peptide as a measure of the secretion and hepatic extraction of insulin: pitfalls and limitations. Diabetes 33:486–493PubMedGoogle Scholar
  202. 202.
    Ross SA, Brown JC, Dupré J (1977) Hypersecretion of gastric inhibitory polypeptide following oral glucose in diabetes mellitus. Diabetes 26:525–529PubMedGoogle Scholar
  203. 203.
    Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK, Holst JJ. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001;86:3717–3723PubMedGoogle Scholar
  204. 204.
    Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ (2001) Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50:609–613PubMedGoogle Scholar
  205. 205.
    Ranganath LR, Beety LM, Morgan LM, Wright JW, Howland R, Marks V (1996) Attenuated GLP-1 secretion in obesity: cause or consequence? Gut 38:916–919PubMedGoogle Scholar
  206. 206.
    Ebert R, Creutzfeldt W (1980) Hypo-and hypersecretion of GIP in maturity-onset diabetics. Diabetologia 19:271–272Google Scholar
  207. 207.
    Ørskov C, Jeppesen J, Madsbad S, Holst JJ (1991) Proglucagon products in plasma of noninsulin-dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest 87:415–423PubMedGoogle Scholar
  208. 208.
    Nauck MA, Heimesaat MM, Ørskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307PubMedGoogle Scholar
  209. 209.
    Amland PF, Jorde R, Aanderup S, Burhol PG, Giercksky K-E (1985) Effects of intravenously infused porcine GIP on serum insulin, plasma C-peptide, and pancreatic polypeptide in non-insulin-dependent diabetes in the fasting state. Scand J Gastroenterol 20:315–320PubMedGoogle Scholar
  210. 210.
    Jorde R, Burhol PG (1987) The insulinotropic effect of gastric inhibitory polypeptide in non-insulin dependent diabetes. Ital J Gastroenterol 19:76–78Google Scholar
  211. 211.
    Jones IR, Owens DR, Moody AJ, Luzio SD, Morris T, Hayes TM (1987) The effects of glucose-dependent insulinotropic polypeptide infused at physiological concentrations in normal subjects and Type 2 (non-insulin-dependent) diabetic patients on glucose tolerance and B-cell secretion. Diabetologia 30:707–712PubMedGoogle Scholar
  212. 212.
    Krarup T, Saurbrey N, Moody AJ, Kühl C, Madsbad S (1988) Effect of porcine gastric inhibitory polypeptide on beta-cell function in Type 1 and Type II diabetes mellitus. Metabolism 36:677–682Google Scholar
  213. 213.
    Meier JJ, Hücking K, Holst JJ, Deacon CF, Schmiegel WH, Nauck MA (2001) Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes 50:2497–2504PubMedGoogle Scholar
  214. 214.
    Vilsbøll T, Krarup T, Madsbad S, Holst JJ (2002) Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 45:1111–1119PubMedGoogle Scholar
  215. 215.
    Nauck MA, Kleine N, Ørskov C, Holst JJ, Willms B, Creutzfeldt W (1993) Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36:741–744PubMedGoogle Scholar
  216. 216.
    Kjems LL, Holst JJ, Vølund A, Madsbad S (2003) The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52:380–386PubMedGoogle Scholar
  217. 217.
    Lynn FC, Pamir N, Ng EH, McIntosh CH, Kieffer TJ, Pederson RA (2001) Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 50:1004–1011PubMedGoogle Scholar
  218. 218.
    Tseng CC, Boylan MO, Jarboe LA, Usdin TB, Wolfe MM (1996) Chronic desensitization of the glucose-dependent insulinotropic polypeptide receptor in diabetic rats. Am J Physiol (Endocrinol Metab) 270:E661–E666Google Scholar
  219. 219.
    El-Ouaghlidi A, Holle H, Nauck MA (2005) Reduced insulinotropic action of GIP in type 2 diabetes is not caused by tachyphylaxis (abstract). Diabetes 54(Suppl 1): A85Google Scholar
  220. 220.
    Vilsbøll T, Knop FK, Krarup T, Johansen A, Madsbad S, Larsen S, Hansen T, Pedersen O, Holst JJ. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype. J Clin Endocrinol Metab. 2003;88:4897–4903PubMedGoogle Scholar
  221. 221.
    Lynn FC, Thompson SA, Pospisilik JA, Ehses JA, Hinke SA, Pamir N, McIntosh CH, Pederson RA. A novel pathway for regulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta cells. Faseb J 2003;17:91–93PubMedGoogle Scholar
  222. 222.
    Holst JJ, Gromada J, Nauck MA (1997) The pathogenesis of NIDDM involves a defective expression of the GIP receptor. Diabetologia 40:984–986PubMedGoogle Scholar
  223. 223.
    Nauck MA, Baller B, Meier JJ (2004) Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of type 2 diabetes. Diabetes 53(Suppl 3):S190–S196PubMedGoogle Scholar
  224. 224.
    Meier JJ, Nauck MA, Siepmann N, Greulich M, Holst JJ, Deacon CF, Schmidt WE, Gallwitz B. Similar insulin secretory response to a gastric inhibitory polypeptide bolus injection at euglycemia in first-degree relatives of patients with type 2 diabetes and control subjects. Metabolism 2003;52:1579–1585PubMedGoogle Scholar
  225. 225.
    Nauck MA, El-Ouaghlidi A, Gabrys B, Hücking K, Holst JJ, Deacon CF, Gallwitz B, Schmidt WE, Meier JJ. Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes. Regul Pept 2004;122:209–217PubMedGoogle Scholar
  226. 226.
    Nyholm B, Walker M, Gravholt CH, Shearing PA, Sturis J, Alberti KGMM, Holst JJ, Schmitz O. Twenty-four-hour insulin secretion rates, circulating concentrations of fuel substrates and gut incretin hormones in healthy offspring of type II (non-insulin-dependent) diabetic parents: evidence of several aberrations. Diabetologia 1999;42: 1314–1323PubMedGoogle Scholar
  227. 227.
    Gerich JE (1998) The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr Rev 19:491–503PubMedGoogle Scholar
  228. 228.
    Meier JJ, Gallwitz B, Askenas M, Vollmer K, Deacon CF, Holst JJ, Schmidt WE, Nauck MA. Secretion of incretin hormones and the insulinotropic effect of gastric inhibitory polypeptide in women with a history of gestational diabetes. Diabetologia 2005; 48:1872–1881PubMedGoogle Scholar
  229. 229.
    Muscelli E, Mari A, Natali A, Astiarraga BD, Camastra S, Frascerra S, Holst JJ, Ferrannini E. Impact of incretin hormones on beta-cell function in subjects with normal or impaired glucose tolerance. Am J Physiol (Endocrinol Metab) 2006;291:E 1144–1150Google Scholar
  230. 230.
    Nauck MA (1996) Therapeutic potential of glucagon-like peptide 1 in type 2 diabetes. Diabet Med 13(Suppl):S39–S43PubMedGoogle Scholar
  231. 231.
    Meier JJ, Gallwitz B, Kask B, Deacon CF, Holst JJ, Schmidt WE, Nauck MA. Stimulation of insulin secretion by intravenous bolus injection and continuous infusion of gastric inhibitory polypeptide in patients with type 2 diabetes and healthy control subjects. Diabetes 2004;53(Suppl. 3):S 220–224Google Scholar
  232. 232.
    Meier JJ, Nauck MA (2004) Gastric inhibitory polypeptide as a potential therapeutic agent? Horm Metab Res 36:859–866PubMedGoogle Scholar
  233. 233.
    Mirakian R, Bottazzo GF, Doniach D (1980) Autoantibodies to duodenal GIP cells and to secretin cells in patients with celiac disease, tropical sprue and maturity-onset diabetes. Clin Exp Immunol 41:33–42PubMedGoogle Scholar
  234. 234.
    Gault VA, Irwin N, Harriott P, Flatt PR, O’Harte FP (2003) DPP IV resistance and insulin releasing activity of a novel di-substituted analogue of glucose-dependent insulinotropic polypeptide, (Ser2-Asp13) GIP. Cell Biol Int 27:41–46PubMedGoogle Scholar
  235. 235.
    Gault VA, O’Harte FP, Harriott P, Mooney MH, Green BD, Flatt PR (2003) Effects of the novel (Pro3)GIP antagonist and exendin(9–39)amide on GIP-and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin. Diabetologia 46:222–230PubMedGoogle Scholar
  236. 236.
    Hinke SA, Gelling RW, Pederson RA, Manhart S, Nian C, Demuth HU, McIntosh CH. Dipeptidyl peptidase IV-resistant [D-Ala(2)]glucose-dependent insulinotropic polypeptide (GIP) improves glucose tolerance in normal and obese diabetic rats. Diabetes 2002;51:652–661PubMedGoogle Scholar
  237. 237.
    Nauck MA, Sauerwald A, Ritzel R, Holst JJ, Schmiegel W (1998) Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure. Diabetes Care 21:1925–1931PubMedGoogle Scholar
  238. 238.
    Kwan EP, Gaisano HY (2005) Glucagon-like peptide 1 regulates sequential and compound exocytosis in pancreatic islet beta cells. Diabetes 54:2734–2743PubMedGoogle Scholar
  239. 239.
    Wang Y, Egan JM, Raygada M, Nadiv O, Roth J, Montrose Rafizadeh C (1995) Glucagon-like peptide-1 affects gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system in RIN 1046–38 cells. Endocrinology 136:4910–4917PubMedGoogle Scholar
  240. 240.
    Holz GG, Kuhtreiber WM, Habener JF (1993) Pancreatic beta cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7–37). Nature 361:362–365PubMedGoogle Scholar
  241. 241.
    Ørskov C, Holst JJ, Nielsen OV (1988) Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 123:2009–2013PubMedGoogle Scholar
  242. 242.
    Creutzfeldt WO, Kleine N, Willms B, Ørskov C, Holst JJ, Nauck MA (1996) Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7–36) amide in type I diabetic patients. Diabetes Care 19: 580–586PubMedGoogle Scholar
  243. 243.
    Dupré J, Behme MT, Hramiak M, McFarlane P, Williamson MP, Zabel P, McDonald TJ. Glucagon-like peptide 1 reduces postprandial glycemic excursions in IDDM. Diabetes 1995;44:626–630PubMedGoogle Scholar
  244. 244.
    Meier JJ, Gethmann A, Götze O, Gallwitz B, Holst JJ, Schmidt WE, Nauck MA. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia 2006;49:1–7Google Scholar
  245. 245.
    Ritzel R, Ørskov C, Holst JJ, Nauck MA (1995) Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7–36 amide] after subcutaneous injection in healthy volunteers. Dose-response-relationships. Diabetologia 38:720–725PubMedGoogle Scholar
  246. 246.
    Willms B, Idowu K, Holst JJ, Creutzfledt W, Nauck MA (1998) Overnight GLP-1 normalizes fasting but not daytime plasma glucose values in NIDDM patients. Exp Clin Edocrinol Diabetes 106:103–107Google Scholar
  247. 247.
    Rachman J, Gribble FM, Levy JC, Turner RC (1997) Near-normalization of diurnal glucose concentrations by continuous administration of glucagon-like peptide 1 (GLP-1) in subjects with NIDDM. Diabetologia 40:205–211PubMedGoogle Scholar
  248. 248.
    Gallwitz B, Ropeter T, Morys-Wortmann C, Mentlein R, Siegel EG, Schmidt WE (2000) Glucagon-like peptide-1-analogues resistant to degradation by dipeptidylpeptidase IV in vitro. Regul Pept 86:103–111PubMedGoogle Scholar
  249. 249.
    Gallwitz B, Schmidt WE, Conlon JM, Creutzfeldt W (1990) Glucagon-like peptide-1(7–36)amide: characterization of the domain responsible for binding to its receptor on rat insulinoma RINm5F cells. J Mol Endocrinol 5:33–39PubMedGoogle Scholar
  250. 250.
    Knudsen LB, Nielsen PF, Huusfeldt PO, Johansen NL, Madsen K, Pedersen FZ, Thogersen H, Wilken M, Agersø H. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem 2000;43:1664–1669PubMedGoogle Scholar
  251. 251.
    Eng J, Andrews PC, Kleinman WA, Singh L, Raufman JP (1990) Purification and structure of exendin-3, a new pancreatic secretagogue isolated from Heloderma horridum venom. J Biol Chem 265:20259–20262PubMedGoogle Scholar
  252. 252.
    Eng J, Kleinman WA, Singh L, Singh G, Raufman JP (1992) Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem 267:7402–7405PubMedGoogle Scholar
  253. 253.
    Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Varns A, Kim D, Baron AD. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 2003;26:2370–2377PubMedGoogle Scholar
  254. 254.
    Kim D, MacConnell L, Zhuang D, Scnabel C, Taylor K, Li W-I, Trautrmann M. Safety and efficacy of a once-weekly, long-acting release formulation of exenatide over 15 weeks in patients with type 2 diabetes (abstract 487-P). Diabetes 2006;55(Suppl. 1): A 116Google Scholar
  255. 255.
    Degn KB, Juhl CB, Sturis J, Jakobsen G, Brock B, Chandramouli V, Rungby J, Landau BR, Schmitz O. One week’s treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha-and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 2004;53:1187–1194PubMedGoogle Scholar
  256. 256.
    Madsbad S, Schmitz O, Ranstam J, Jakobsen G, Matthews DR (2004) Improved glycemic control with no weight increase in patients with type 2 diabetes after oncedaily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): A 12-week, double-blind, randomized, controlled trial. Diabetes Care 27:1335–1342PubMedGoogle Scholar
  257. 257.
    Lawrence B, Wen SY, Jette L, Thibaudeau K, Castaigne J-P (2002) CJC-1131, the novel long-acting GLP-1 analogue, delays gastric emptying and demonstrates safety and tolerability in preclinical testing (abstract). Diabetes 51(Suppl 2):A84Google Scholar
  258. 258.
    Baggio LL, Huang Q, Brown TJ, Drucker DJ (2004) A recombinant human glucagonlike peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53:2492–2500PubMedGoogle Scholar
  259. 259.
    Deacon CF (2004) Therapeutic strategies based on glucagon-like peptide 1. Diabetes 53:2181–2189PubMedGoogle Scholar
  260. 260.
    Åhren B, Landin-Olsson M, Jansson PA, Svensson M, Holmes D, Schweizer A (2004) Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab 89:2078–2084PubMedGoogle Scholar
  261. 261.
    Nauck MA, El-Ouaghlidi A (2005)The therapeutic actions of DPP-IV inhibition are not mediated by glucagon-like peptide-1 (for debate). Diabetologia 48:608–611PubMedGoogle Scholar
  262. 262.
    Plamboeck A, Holst JJ, Carr RD, Deacon CF (2005) Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia 48:1882–1890PubMedGoogle Scholar
  263. 263.
    Mentlein R, Gallwitz B, Schmidt WE (1993) Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 214:829–835PubMedGoogle Scholar
  264. 264.
    Mentlein R (1999) Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul Pept 85:9–24PubMedGoogle Scholar
  265. 265.
    Åhren B, Gomis R, Standl E, Mills D, Schweizer A (2004) Twelve-and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care 27:2874–2880PubMedGoogle Scholar
  266. 266.
    Åhren B, Pacini G, Foley JE, Schweizer A (2005) Improved meal-related beta-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care 28:1936–1940PubMedGoogle Scholar
  267. 267.
    Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL, Drucker DJ. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 1996;2:1254–1258PubMedGoogle Scholar
  268. 268.
    Hansotia T, Baggio LL, Delmeire D, Hinke SA, Yamada Y, Tsukiyama K, Seino Y, Holst JJ, Schuit F, Drucker DJ. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors. Diabetes 2004;53:1326–1335PubMedGoogle Scholar
  269. 269.
    Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y, Kubota A, Fujimoto S, Kajikawa M, Kuroe A, Tsuda K, Hashimoto H, Yamashita T, Jomori T, Tashiro F, Miyazaki J-i, Seino Y. Glucose intolerance caused by a defect in the entero-insular axis: A study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 1999;96:14843–14847PubMedGoogle Scholar
  270. 270.
    Buffa B, Polak JM, Pearse AGE, Solcia E, Grimelius L, Capella C (1975) Identification of the intestinal cell storing gastric inhibitory polypeptide. Histochemistry 43:249–255PubMedGoogle Scholar
  271. 271.
    Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M (2001) Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 50:2237–2243PubMedGoogle Scholar
  272. 272.
    Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P (1998) Glucagonlike peptide 1 (7–36) amide stimulates exocytosis in human pancreatic beta cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 47(1):57–65PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Michael A. Nauck
    • 1
  • Juris J. Meier
    • 2
  1. 1.Diabeteszentrum Bad LauterbergBad LauterbergGermany
  2. 2.Medizinische Klinik I, St. Josef-HospitalKlinikum der Ruhr-Universität BochumBochumGermany

Personalised recommendations