Advertisement

Stem Cells as a Cure for Diabetes

  • Timo Otonkoski
  • Meenal Banerjee
  • Karolina Lundin

Abstract

Clinical islet transplantation trials have shown that it is possible to at least partially restore functional beta-cell mass in type 1 diabetic patients. However, the scarcity of organ donors and need for intensive immunosuppression prevent the widespread use of this treatment regimen. Progress in stem cell biology provides hope for the solution of these problems. New beta cells could be grown in the laboratory from pancreatic precursors or from more multipotent stem cells. Neogenesis of islets from intrapancreatic precursors has been demonstrated in a number of studies. Fully differentiated beta cells have only been derived in primary cultures, mainly reflecting transdifferentiation from acinar or ductal cells. It is unlikely that these cells could provide a quantitatively sufficient source for cell transplantation. However, the stimulation of endogenous beta-cell regeneration is a promising therapeutic possibility. Extensive proliferation of supposed pancreatic tissue stem cells has also been found, but full maturation of the expanded cells into functional islet cells has not been reported. The most promising possibility to generate theoretically unlimited numbers of beta cells is based on the use of embryonic stem (ES) cells. Human ES cells can be taken through a multiphase differentiation protocol to become insulin-expressing cells that phenotypically resemble immature human fetal beta cells. This field is still in its infancy and many problems need to be solved before ES-cell based products could be developed to the level required for clinical trials in diabetes.

Keywords

Embryonic Stem Cell Beta Cell Human Embryonic Stem Cell Human Islet Mouse Embryonic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ricordi C, Strom TB (2004) Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol 4:259–268PubMedCrossRefGoogle Scholar
  2. 2.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients With type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen [See Comments]. N Engl J Med 343:230–238PubMedCrossRefGoogle Scholar
  3. 3.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, Secchi A, Brendel MD, Berney T, Brennan DC, Cagliero E, Alejandro R, Ryan EA, DiMercurio B, Morel P, Polonsky KS, Reems JA, Bretzel RG, Bertuzzi F, Froud T, Kandaswamy R, Sutherland DE, Eisenbarth G, Segal M, Preiksaitis J, Korbutt GS, Barton FB, Viviano L, Seyfert-Margolis V, Bluestone J, Lakey JR (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355:1318–1330PubMedCrossRefGoogle Scholar
  4. 4.
    Chong AS, Shen J, Tao J, Yin D, Kuznetsov A, Hara M, Philipson LH (2006) Reversal of diabetes in non-obese diabetic mice without spleen cell-derived beta cell regeneration. Science 311:1774–1775PubMedCrossRefGoogle Scholar
  5. 5.
    Nishio J, Gaglia JL, Turvey SE, Campbell C, Benoist C, Mathis D (2006) Islet recovery and reversal of murine type 1 diabetes in the absence of any infused spleen cell contribution. Science 311:1775–1778PubMedCrossRefGoogle Scholar
  6. 6.
    Suri A, Calderon B, Esparza TJ, Frederick K, Bittner P, Unanue ER (2006) Immunological reversal of autoimmune diabetes without hematopoietic replacement of beta cells. Science 311:1778–1780PubMedCrossRefGoogle Scholar
  7. 7.
    Kodama S, Kuhtreiber W, Fujimura S, Dale EA, Faustman DL (2003) Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302:1223–1227PubMedCrossRefGoogle Scholar
  8. 8.
    Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429: 41–46PubMedCrossRefGoogle Scholar
  9. 9.
    Tyrberg B, Ustinov J, Otonkoski T, Andersson A (2001) Stimulated endocrine cell proliferation and differentiation in transplanted human pancreatic islets: effects of the ob gene and compensatory growth of the implantation organ. Diabetes 50:301–307PubMedCrossRefGoogle Scholar
  10. 10.
    Bouwens L, Lu WG, Dekrijger RR (1997) Proliferation and differentiation in the human fetal endocrine pancreas. Diabetologia 40:398–404PubMedCrossRefGoogle Scholar
  11. 11.
    Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas: A possible recapitulation of embryonic development. Diabetes 42:1715–1720PubMedCrossRefGoogle Scholar
  12. 12.
    Rafaeloff R, Pittenger GL, Barlow SW, Qin XF, Yan B, Rosenberg L, Duguid WP, Vinik AI (1997) Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. J Clin Invest 99:2100–2109PubMedCrossRefGoogle Scholar
  13. 13.
    Gu D, Sarvetnick N (1993) Epithelial cell proliferation and islet neogenesis in IFN-g transgenic mice. Development 118:33–46PubMedGoogle Scholar
  14. 14.
    Rooman I, Lardon J, Bouwens L (2002) Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 51:686–690PubMedCrossRefGoogle Scholar
  15. 15.
    Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–633PubMedGoogle Scholar
  16. 16.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRefGoogle Scholar
  17. 17.
    Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMedCrossRefGoogle Scholar
  18. 18.
    Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, O’Neil JJ (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 97:7999–8004PubMedCrossRefGoogle Scholar
  19. 19.
    Petropavlovskaia M, Rosenberg L (2002) Identification and characterization of small cells in the adult pancreas: potential progenitor cells? Cell Tissue Res 310:51–58PubMedCrossRefGoogle Scholar
  20. 20.
    Gao R, Ustinov J, Pulkkinen MA, Lundin K, Korsgren O, Otonkoski T (2003) Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 52:2007–2015PubMedCrossRefGoogle Scholar
  21. 21.
    Gao R, Ustinov J, Korsgren O, Otonkoski T (2005) In vitro neogenesis of human islets reflects the plasticity of differentiated human pancreatic cells. Diabetologia 48: 2296–2304PubMedCrossRefGoogle Scholar
  22. 22.
    Gao R, Ustinov J, Korsgren O, Mikkola M, Lundin K, Otonkoski T (2006) Maturation of in vitro-generated human islets after transplantation in nude mice. Mol Cell Endocrinol 264:28–34PubMedCrossRefGoogle Scholar
  23. 23.
    Banerjee M, Bhonde RR (2003) Islet generation from intra islet precursor cells of diabetic pancreas: in vitro studies depicting in vivo differentiation. JOP 4:137–145PubMedGoogle Scholar
  24. 24.
    Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, van der Kooy D (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22:1115–1124PubMedCrossRefGoogle Scholar
  25. 25.
    Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L (2005) In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48:49–57PubMedCrossRefGoogle Scholar
  26. 26.
    Minami K, Okuno M, Miyawaki K, Okumachi A, Ishizaki K, Oyama K, Kawaguchi M, Ishizuka N, Iwanaga T, Seino S (2005) Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 102:15116–15121PubMedCrossRefGoogle Scholar
  27. 27.
    Hao E, Tyrberg B, Itkin-Ansari P, Lakey JR, Geron I, Monosov EZ, Barcova M, Mercola M, Levine F (2006) Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nat Med 12:310–316PubMedCrossRefGoogle Scholar
  28. 28.
    Todorov I, Omori K, Pascual M, Rawson J, Nair I, Valiente L, Vuong T, Matsuda T, Orr C, Ferreri K, Smith CV, Kandeel F, Mullen Y (2006) Generation of human islets through expansion and differentiation of non-islet pancreatic cells discarded (pancreatic discard) after islet isolation. Pancreas 32:130–138PubMedCrossRefGoogle Scholar
  29. 29.
    Sugiyama T, Rodriguez RT, McLean GW, Kim SK (2007) Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci USA 104:175–180PubMedCrossRefGoogle Scholar
  30. 30.
    Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG (2000) Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6:278–282PubMedCrossRefGoogle Scholar
  31. 31.
    Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50:521–533PubMedCrossRefGoogle Scholar
  32. 32.
    Gershengorn MC, Hardikar AA, Wei C, Geras-Raaka E, Marcus-Samuels B, Raaka BM (2004) Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306:2261–2264PubMedCrossRefGoogle Scholar
  33. 33.
    Suzuki A, Nakauchi H, Taniguchi H (2004) Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes 53:2143–2152PubMedCrossRefGoogle Scholar
  34. 34.
    Lin HT, Chiou SH, Kao CL, Shyr YM, Hsu CJ, Tarng YW, Ho LL, Kwok CF, Ku HH (2006) Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting. World J Gastroenterol 12:4529–4535PubMedGoogle Scholar
  35. 35.
    Ouziel-Yahalom L, Zalzman M, Anker-Kitai L, Knoller S, Bar Y, Glandt M, Herold K, Efrat S (2006) Expansion and redifferentiation of adult human pancreatic islet cells. Biochem Biophys Res Commun 341:291–298PubMedCrossRefGoogle Scholar
  36. 36.
    Yamamoto T, Yamato E, Taniguchi H, Shimoda M, Tashiro F, Hosoi M, Sato T, Fujii S, Miyazaki JI (2006) Stimulation of cAMP signalling allows isolation of clonal pancreatic precursor cells from adult mouse pancreas. Diabetologia 49:2359–2367PubMedCrossRefGoogle Scholar
  37. 37.
    Piper K, Ball SG, Turnpenny LW, Brickwood S, Wilson DI, Hanley NA (2002) Betacell differentiation during human development does not rely on nestin-positive precursors: implications for stem cell-derived replacement therapy. Diabetologia 45:1045–1047PubMedCrossRefGoogle Scholar
  38. 38.
    Selander L, Edlund H (2002) Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas. Mech Dev 113:189–192PubMedCrossRefGoogle Scholar
  39. 39.
    Treutelaar MK, Skidmore JM, Dias-Leme CL, Hara M, Zhang L, Simeone D, Martin DM, Burant CF (2003) Nestin-lineage cells contribute to the microvasculature but not endocrine cells of the islet. Diabetes 52:2503–2512PubMedCrossRefGoogle Scholar
  40. 40.
    Delacour A, Nepote V, Trumpp A, Herrera PL (2004) Nestin expression in pancreatic exocrine cell lineages. Mech Dev 121:3–14PubMedCrossRefGoogle Scholar
  41. 41.
    Oreffo RO, Cooper C, Mason C, Clements M (2005) Mesenchymal stem cells: lineage, plasticity, and skeletal therapeutic potential. Stem Cell Rev 1:169–178PubMedCrossRefGoogle Scholar
  42. 42.
    Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850PubMedGoogle Scholar
  43. 43.
    Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53:1721–1732PubMedCrossRefGoogle Scholar
  44. 44.
    Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770PubMedCrossRefGoogle Scholar
  45. 45.
    Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, Migita M, Shimada T, Kawamori R, Watada H (2003) Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46:1366–1374PubMedCrossRefGoogle Scholar
  46. 46.
    Taneera J, Rosengren A, Renstrom E, Nygren JM, Serup P, Rorsman P, Jacobsen SE (2006) Failure of transplanted bone marrow cells to adopt a pancreatic beta-cell fate. Diabetes 55:290–296PubMedCrossRefGoogle Scholar
  47. 47.
    Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA (2004) Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 53:91–98PubMedCrossRefGoogle Scholar
  48. 48.
    Yin D, Tao J, Lee DD, Shen J, Hara M, Lopez J, Kuznetsov A, Philipson LH, Chong AS (2006) Recovery of islet beta-cell function in streptozotocin-induced diabetic mice: an indirect role for the spleen. Diabetes 55:3256–3263PubMedCrossRefGoogle Scholar
  49. 49.
    Kodama S, Davis M, Faustman DL (2005) Regenerative medicine: a radical reappraisal of the spleen. Trends Mol Med 11:271–276PubMedCrossRefGoogle Scholar
  50. 50.
    Faustman DL, Tran SD, Kodama S, Lodde BM, Szalayova I, Key S, Toth ZE, Mezey E (2006) Comment on papers by Chong et al., Nishio et al., and Suri et al. on diabetes reversal in NOD mice. Science 314:1243; author reply 1243PubMedCrossRefGoogle Scholar
  51. 51.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  52. 52.
    Wei CL, Miura T, Robson P, Lim SK, Xu XQ, Lee MY, Gupta S, Stanton L, Luo Y, Schmitt J, Thies S, Wang W, Khrebtukova I, Zhou D, Liu ET, Ruan YJ, Rao M, Lim B (2005) Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells 23:166–185PubMedCrossRefGoogle Scholar
  53. 53.
    Pera MF, Trounson AO (2004) Human embryonic stem cells: prospects for development. Development 131:5515–5525PubMedCrossRefGoogle Scholar
  54. 54.
    Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95PubMedGoogle Scholar
  55. 55.
    Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F (2000) insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocininduced diabetic mice. Diabetes 49:157–162PubMedCrossRefGoogle Scholar
  56. 56.
    Kahan BW, Jacobson LM, Hullett DA, Ochoada JM, Oberley TD, Lang KM, Odorico JS (2003) Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes 52:2016–2024PubMedCrossRefGoogle Scholar
  57. 57.
    Shiroi A, Yoshikawa M, Yokota H, Fukui H, Ishizaka S, Tatsumi K, Takahashi Y (2002) Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells 20:284–292PubMedCrossRefGoogle Scholar
  58. 58.
    Leon-Quinto T, Jones J, Skoudy A, Burcin M, Soria B (2004) In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 47:1442–1451PubMedCrossRefGoogle Scholar
  59. 59.
    Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50:1691–1697PubMedCrossRefGoogle Scholar
  60. 60.
    Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394PubMedCrossRefGoogle Scholar
  61. 61.
    Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK (2002) Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA 99:16105–16110PubMedCrossRefGoogle Scholar
  62. 62.
    Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L, Wobus AM (2003) Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 100: 998–1003PubMedCrossRefGoogle Scholar
  63. 63.
    Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53:1030–1037PubMedCrossRefGoogle Scholar
  64. 64.
    Blyszczuk P, Asbrand C, Rozzo A, Kania G, St-Onge L, Rupnik M, Wobus AM (2004) Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int J Dev Biol 48:1095–1104PubMedCrossRefGoogle Scholar
  65. 65.
    Marenah L, McCluskey JT, Abdel-Wahab YH, O’Harte FP, McClenaghan NH, Flatt PR (2006) A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones. Biol Chem 387:941–947PubMedCrossRefGoogle Scholar
  66. 66.
    Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA (2003) Insulin staining of ES cell progeny from insulin uptake. Science 299:363PubMedGoogle Scholar
  67. 67.
    Kania G, Blyszczuk P, Wobus AM (2004) The generation of insulin-producing cells from embryonic stem cells—a discussion of controversial findings. International Journal of Developmental Biology 48:1061–1064PubMedCrossRefGoogle Scholar
  68. 68.
    Hansson M, Tonning A, Frandsen U, Petri A, Rajagopal J, Englund MC, Heller RS, Hakansson J, Fleckner J, Skold HN, Melton D, Semb H, Serup P (2004) Artifactual insulin release from differentiated embryonic stem cells. Diabetes 53:2603–2609PubMedCrossRefGoogle Scholar
  69. 69.
    Roche E, Sepulcre P, Reig JA, Santana A, Soria B (2005) Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells. FASEB J 19:1341–1343PubMedGoogle Scholar
  70. 70.
    Treff NR, Vincent RK, Budde ML, Browning VL, Magliocca JF, Kapur V, Odorico JS (2006) Differentiation of embryonic stem cells conditionally expressing neurogenin 3. Stem Cells 24:2529–2537PubMedCrossRefGoogle Scholar
  71. 71.
    Xu X, Kahan B, Forgianni A, Jing P, Jacobson L, Browning V, Treff N, Odorico J (2006) Endoderm and pancreatic islet lineage differentiation from human embryonic stem cells. Cloning Stem Cells 8:96–107PubMedCrossRefGoogle Scholar
  72. 72.
    Milne HM, Burns CJ, Kitsou-Mylona I, Luther MJ, Minger SL, Persaud SJ, Jones PM (2005) Generation of insulin-expressing cells from mouse embryonic stem cells. Biochem Biophys Res Commun 328:399–403PubMedCrossRefGoogle Scholar
  73. 73.
    Houard N, Rousseau GG, Lemaigre FP (2003) HNF-6-independent differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 46:378–385PubMedGoogle Scholar
  74. 74.
    Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, Fehling HJ, Keller G (2004) Development of definitive endoderm from embryonic stem cells in culture. Development 131:1651–1662PubMedCrossRefGoogle Scholar
  75. 75.
    Ku HT, Zhang N, Kubo A, O’Connor R, Mao M, Keller G, Bromberg JS (2004) Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells 22:1205–1217PubMedCrossRefGoogle Scholar
  76. 76.
    Tada S, Era T, Furusawa C, Sakurai H, Nishikawa S, Kinoshita M, Nakao K, Chiba T, Nishikawa S (2005) Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132:4363–4374PubMedCrossRefGoogle Scholar
  77. 77.
    Halban PA (2004) Cellular sources of new pancreatic beta cells and therapeutic implications for regenerative medicine. Nat Cell Biol 6:1021–1025PubMedCrossRefGoogle Scholar
  78. 78.
    Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T, Nishikawa S (2005) Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 23: 1542–1550PubMedCrossRefGoogle Scholar
  79. 79.
    Brolen GK, Heins N, Edsbagge J, Semb H (2005) Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulin-producing beta-cell-like cells. Diabetes 54:2867–2874PubMedCrossRefGoogle Scholar
  80. 80.
    D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541PubMedCrossRefGoogle Scholar
  81. 81.
    Shi Y, Hou L, Tang F, Jiang W, Wang P, Ding M, Deng H (2005) Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells 23:656–662PubMedCrossRefGoogle Scholar
  82. 82.
    Micallef SJ, Janes ME, Knezevic K, Davis RP, Elefanty AG, Stanley EG (2005) Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells. Diabetes 54:301–305PubMedCrossRefGoogle Scholar
  83. 83.
    McLean AB, D’Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, Sheppard AM, Liu H, Xu Y, Baetge EE, Dalton S (2007) Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25:29–38PubMedCrossRefGoogle Scholar
  84. 84.
    Shiraki N, Lai CJ, Hishikari Y, Kume S (2005) TGF-beta signaling potentiates differentiation of embryonic stem cells to Pdx-1 expressing endodermal cells. Genes Cells 10:503–516PubMedCrossRefGoogle Scholar
  85. 85.
    Vaca P, Martin F, Vegara-Meseguer JM, Rovira JM, Berna G, Soria B (2006) Induction of differentiation of embryonic stem cells into insulin-secreting cells by fetal soluble factors. Stem Cells 24:258–265PubMedCrossRefGoogle Scholar
  86. 86.
    D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormoneexpressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401PubMedCrossRefGoogle Scholar
  87. 87.
    Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L (2004) Electromechanical integration of cardio myocytes derived from human embryonic stem cells. Nat Biotechnol 22:1282–1289PubMedCrossRefGoogle Scholar
  88. 88.
    Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232PubMedCrossRefGoogle Scholar
  89. 89.
    Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S, Impola U, Mikkola M, Olsson C, Miller-Podraza H, Blomqvist M, Olonen A, Salo H, Lehenkari P, Tuuri T, Otonkoski T, Natunen J, Saarinen J, Laine J (2007) N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25:197–202PubMedCrossRefGoogle Scholar
  90. 90.
    Ellerstrom C, Strehl R, Moya K, Andersson K, Bergh C, Lundin K, Hyllner J, Semb H (2006) Derivation of a xeno-free human embryonic stem cell line. Stem Cells 24: 2170–2176PubMedCrossRefGoogle Scholar
  91. 91.
    Allegrucci C, Young LE (2006) Differences between human embryonic stem cell lines. Hum Reprod Update 13:103–120PubMedCrossRefGoogle Scholar
  92. 92.
    Mikkola M, Olsson C, Palgi J, Ustinov J, Palomaki T, Horelli-Kuitunen N, Knuutila S, Lundin K, Otonkoski T, Tuuri T (2006) Distinct differentiation characteristics of individual human embryonic stem cell lines. BMC Dev Biol 6:40PubMedCrossRefGoogle Scholar
  93. 93.
    Roep BO, Stobbe I, Duinkerken G, van Rood JJ, Lernmark A, Keymeulen B, Pipeleers D, Claas FH, de Vries RR (1999) Auto-and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. Diabetes 48: 484–490PubMedCrossRefGoogle Scholar
  94. 94.
    Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24:221–229PubMedCrossRefGoogle Scholar
  95. 95.
    Sasaki H, Hogan BL (1993) Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118:47–59PubMedGoogle Scholar
  96. 96.
    Ang SL, Wierda A, Wong D, Stevens KA, Cascio S, Rossant J, Zaret KS (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119:1301–1315PubMedGoogle Scholar
  97. 97.
    Monaghan AP, Kaestner KH, Grau E, Schutz G (1993) Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119:567–578PubMedGoogle Scholar
  98. 98.
    Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam PP, Hayashi Y (2002) Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129:2367–2379PubMedGoogle Scholar
  99. 99.
    Belo JA, Bouwmeester T, Leyns L, Kertesz N, Gallo M, Follettie M, De Robertis EM (1997) Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech Dev 68:45–57PubMedCrossRefGoogle Scholar
  100. 100.
    Biben C, Stanley E, Fabri L, Kotecha S, Rhinn M, Drinkwater C, Lah M, Wang CC, Nash A, Hilton D, Ang SL, Mohun T, Harvey RP (1998) Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev Biol 194:135–151PubMedCrossRefGoogle Scholar
  101. 101.
    Shawlot W, Deng JM, Behringer RR (1998) Expression of the mouse cerberus-related gene, Cerr1, suggests a role in anterior neural induction and somitogenesis. Proc Natl Acad Sci USA 95:6198–6203PubMedCrossRefGoogle Scholar
  102. 102.
    Pearce JJ, Penny G, Rossant J (1999) A mouse cerberus/Dan-related gene family. Dev Biol 209:98–110PubMedCrossRefGoogle Scholar
  103. 103.
    McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213:442–456PubMedCrossRefGoogle Scholar
  104. 104.
    Blum M, Gaunt SJ, Cho KW, Steinbeisser H, Blumberg B, Bittner D, De Robertis EM (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69:1097–1106PubMedCrossRefGoogle Scholar
  105. 105.
    Liao WS, Conn AR, Taylor JM (1980) Changes in rat alpha 1-fetoprotein and albumin mRNA levels during fetal and neonatal development. J Biol Chem 255:10036–10039PubMedGoogle Scholar
  106. 106.
    Muglia L, Locker J (1984) Developmental regulation of albumin and alphafetoprotein gene expression in the rat. Nucleic Acids Res 12:6751–6762PubMedCrossRefGoogle Scholar
  107. 107.
    Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelialmesenchymal transitions in early development. Mech Dev 120:1351–1383PubMedCrossRefGoogle Scholar
  108. 108.
    Hatta K, Takeichi M (1986) Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320:447–449PubMedCrossRefGoogle Scholar
  109. 109.
    Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181:64–78PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Timo Otonkoski
    • 1
  • Meenal Banerjee
    • 1
  • Karolina Lundin
    • 1
  1. 1.Hospital for Children and Adolescents and the Biomedicum Stem Cell Center, Biomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland

Personalised recommendations