Beta-Cell Replication

  • Seth J. Salpeter
  • Yuval Dor


Patients suffering from type 1 and type 2 diabetes exhibit a decrease in the mass of insulin-producing beta cells. Both the ability to generate and expand large amounts of transplantable beta cells and the capacity to encourage beta-cell proliferation in the patient represent potential cures for the disease. Understanding the basic cell cycle machinery responsible for the replication of pancreatic beta cells is therefore an important challenge in diabetes research today, in hopes that it will provide useful insights into betacell growth and proliferation. Though for many years pancreas biologists believed that adult beta cells emerged from progenitor cells and remained post-mitotic throughout their lifetimes, recent work has demonstrated that adult beta cells are a dynamic and replicating population. In light of this new understanding of pancreatic beta cells, much attention is currently being focused on the regulation of the replication process. However, even as biologists focus on the particular machinery involved in division, a proper understanding can only be obtained in light of beta-cell development, origins, and dynamics. In this review, we present a brief introduction to beta-cell development and origins, followed by a description of beta-cell proliferation machinery. We conclude with a discussion of a possible regulatory model for beta-cell proliferation.


Beta Cell Hepatocyte Growth Factor Human Islet Men1 Gene Pancreatic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110PubMedCrossRefGoogle Scholar
  2. 2.
    Rhodes CJ (2005) Type 2 diabetes—a matter of beta-cell life and death? Science 307(5708):380–384PubMedCrossRefGoogle Scholar
  3. 3.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343(4): 230–238PubMedCrossRefGoogle Scholar
  4. 4.
    Halban PA (2004) Cellular sources of new pancreatic beta cells and therapeutic implications for regenerative medicine. Nat Cell Biol 6(11):1021–1025PubMedCrossRefGoogle Scholar
  5. 5.
    Bonner-Weir S, Deery D, Leahy JL, Weir GC (1989) Compensatory growth of pancreatic beta cells in adult rats after short-term glucose infusion. Diabetes 38(1):49–53PubMedCrossRefGoogle Scholar
  6. 6.
    Montanya E, Nacher V, Biarnes M, Soler J (2000) Linear correlation between beta-cell mass and body weight throughout the lifespan in Lewis rats: role of beta-cell hyperplasia and hypertrophy. Diabetes 49(8):1341–1346PubMedCrossRefGoogle Scholar
  7. 7.
    Skau M, Pakkenberg B, Buschard K, Bock T (2001) Linear correlation between the total islet mass and the volume-weighted mean islet volume. Diabetes 50(8): 1763–1770PubMedCrossRefGoogle Scholar
  8. 8.
    Messier B, Leblond CP (1960) Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Am J Anat 106:247–285PubMedCrossRefGoogle Scholar
  9. 9.
    Meier JJ, Lin JC, Butler AE, Galasso R, Martinez DS, Butler PC (2006) Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia 49(8):1838–1844PubMedCrossRefGoogle Scholar
  10. 10.
    Ritzel RA, Butler PC (2003) Replication increases beta-cell vulnerability to human islet amyloid polypeptide-induced apoptosis. Diabetes 52(7):1701–1708PubMedCrossRefGoogle Scholar
  11. 11.
    Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B (2000) Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 49(8):1325–1333PubMedCrossRefGoogle Scholar
  12. 12.
    Kim SK, MacDonald RJ (2002) Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12(5):540–547PubMedCrossRefGoogle Scholar
  13. 13.
    Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42(12):1715–1720PubMedCrossRefGoogle Scholar
  14. 14.
    Bonner-Weir S, Toschi E, Inada A, Reitz P, Fonseca SY, Aye T, Sharma A (2004) The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes 5Suppl 2:16–22PubMedCrossRefGoogle Scholar
  15. 15.
    Bonner-Weir S, Sharma A (2002) Pancreatic stem cells. J Pathol 197(4):519–526PubMedCrossRefGoogle Scholar
  16. 16.
    Lipsett M, Finegood DT (2002) beta-cell neogenesis during prolonged hyperglycemia in rats. Diabetes 51(6):1834–1841PubMedCrossRefGoogle Scholar
  17. 17.
    Minami K, Okuno M, Miyawaki K, Okumachi A, Ishizaki K, Oyama K, Kawaguchi M, Ishizuka N, Iwanaga T, Seino S (2005) Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 102(42):15116–15121PubMedCrossRefGoogle Scholar
  18. 18.
    Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucosecompetent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111(6):843–850PubMedGoogle Scholar
  19. 19.
    Lee VM, Stoffel M (2003) Bone marrow: an extra-pancreatic hideout for the elusive pancreatic stem cell? J Clin Invest 111(6):799–801PubMedGoogle Scholar
  20. 20.
    Kodama S, Kuhtreiber W, Fujimura S, Dale EA, Faustman DL (2003) Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302(5648): 1223–1237PubMedCrossRefGoogle Scholar
  21. 21.
    Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF (2002) Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun 293(2):670–674PubMedCrossRefGoogle Scholar
  22. 22.
    Suri A, Calderon B, Esparza TJ, Frederick K, Bittner P, Unanue ER (2006) Immunological reversal of autoimmune diabetes without hematopoietic replacement of beta cells. Science 311(5768):1778–1780PubMedCrossRefGoogle Scholar
  23. 23.
    Yin D, Tao J, Lee DD, Shen J, Hara M, Lopez J, Kuznetsov A, Philipson LH, Chong AS (2006) Recovery of islet beta-cell function in streptozotocin-induced diabetic mice: an indirect role for the spleen. Diabetes 55(12):3256–3263PubMedCrossRefGoogle Scholar
  24. 24.
    Nishio J, Gaglia JL, Turvey SE, Campbell C, Benoist C, Mathis D (2006) Islet recovery and reversal of murine type 1 diabetes in the absence of any infused spleen cell contribution. Science 311(5768):1775–1778PubMedCrossRefGoogle Scholar
  25. 25.
    Chong AS, Shen J, Tao J, Yin D, Kuznetsov A, Hara M, Philipson LH (2006) Reversal of diabetes in non-obese diabetic mice without spleen cell-derived beta cell regeneration. Science 311(5768):1774–1775PubMedCrossRefGoogle Scholar
  26. 26.
    Melton DA (2006) Reversal of type 1 diabetes in mice. N Engl J Med 355(1):89–90PubMedCrossRefGoogle Scholar
  27. 27.
    Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF (2004) No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53(3):616–623PubMedCrossRefGoogle Scholar
  28. 28.
    Esni F, Stoffers DA, Takeuchi T, Leach SD (2004) Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas. Mech Dev 121(1):15–25PubMedCrossRefGoogle Scholar
  29. 29.
    Delacour A, Nepote V, Trumpp A, Herrera PL (2004) Nestin expression in pancreatic exocrine cell lineages. Mech Dev 121(1):3–14PubMedCrossRefGoogle Scholar
  30. 30.
    Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429(6987): 41–46PubMedCrossRefGoogle Scholar
  31. 31.
    Georgia S, Bhushan A (2004) Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest 114(7):963–968PubMedGoogle Scholar
  32. 32.
    Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY, Sicinski P, White MF (2005) Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol 25(9):3752–3762PubMedCrossRefGoogle Scholar
  33. 33.
    Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22(1):44–52PubMedCrossRefGoogle Scholar
  34. 34.
    Uchida T, Nakamura T, Hashimoto N, Matsuda T, Kotani K, Sakaue H, Kido Y, Hayashi Y, Nakayama KI, White MF, Kasuga M (2005) Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat Med 11(2):175–182PubMedCrossRefGoogle Scholar
  35. 35.
    Gershengorn MC, Hardikar AA, Wei C, Geras-Raaka E, Marcus-Samuels B, Raaka BM (2004) Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306(5705):2261–2264PubMedCrossRefGoogle Scholar
  36. 36.
    Ouziel-Yahalom L, Zalzman M, Anker-Kitai L, Knoller S, Bar Y, Glandt M, Herold K, Efrat S (2006) Expansion and redifferentiation of adult human pancreatic islet cells. Biochem Biophys Res Commun 341(2):291–298PubMedCrossRefGoogle Scholar
  37. 37.
    Weinberg N, Ouziel-Yahalom L, Knoller S, Efrat S, Dor Y (2007) Lineage tracing evidence for in-vitro dedifferentiation, but rare proliferation, of mouse pancreatic β cells. Diabetes 56(5):1299–1304PubMedCrossRefGoogle Scholar
  38. 38.
    Moss LG, Rhodes CJ (2007) Beta-cell regeneration: epithelial mesenchymal transition pre-EMTpted by lineage tracing? Diabetes 56(1):281–282PubMedCrossRefGoogle Scholar
  39. 39.
    Chase LG, Ulloa-Montoya F, Kidder BL, Verfaillie CM (2007) Islet-derived fibroblastlike cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulinpositive cells. Diabetes 56(1):3–7PubMedCrossRefGoogle Scholar
  40. 40.
    Kulkarni RN, Jhala US, Winnay JN, Krajewski S, Montminy M, Kahn CR (2004) PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J Clin Invest 114(6):828–836PubMedGoogle Scholar
  41. 41.
    Finegood DT, Scaglia L, Bonner-Weir S (1995) Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44(3):249–256PubMedCrossRefGoogle Scholar
  42. 42.
    Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S (1997) Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 138(4):1736–1741PubMedCrossRefGoogle Scholar
  43. 43.
    Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA (2005) Very slow turnover of beta-cells in aged adult mice. Diabetes 54(9):2557–2567PubMedCrossRefGoogle Scholar
  44. 44.
    Bouwens L, Lu WG, De Krijger R (1997) Proliferation and differentiation in the human fetal endocrine pancreas. Diabetologia 40(4):398–404PubMedCrossRefGoogle Scholar
  45. 45.
    Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18(22):2699–2711PubMedCrossRefGoogle Scholar
  46. 46.
    Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36(3): 131–149PubMedCrossRefGoogle Scholar
  47. 47.
    Cozar-Castellano I, Weinstock M, Haught M, Velazquez-Garcia S, Sipula D, Stewart AF (2006) Evaluation of beta-cell replication in mice transgenic for hepatocyte growth factor and placental lactogen: comprehensive characterization of the G1/S regulatory proteins reveals unique involvement of p21cip. Diabetes 55(1):70–77PubMedCrossRefGoogle Scholar
  48. 48.
    Cozar-Castellano I, Takane KK, Bottino R, Balamurugan AN, Stewart AF (2004) Induction of beta-cell proliferation and retinoblastoma protein phosphorylation in rat and human islets using adenovirus-mediated transfer of cyclin-dependent kinase-4 and cyclin D1. Diabetes 53(1):149–159PubMedCrossRefGoogle Scholar
  49. 49.
    Martin J, Hunt SL, Dubus P, Sotillo R, Nehme-Pelluard F, Magnuson MA, Parlow AF, Malumbres M, Ortega S, Barbacid M (2003) Genetic rescue of Cdk4 null mice restores pancreatic beta-cell proliferation but not homeostatic cell number. Oncogene 22(34):5261–5269PubMedCrossRefGoogle Scholar
  50. 50.
    Fatrai S, Elghazi L, Balcazar N, Cras-Meneur C, Krits I, Kiyokawa H, Bernal-Mizrachi E (2006) Akt induces {beta}-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55(2):318–325PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang X, Gaspard JP, Mizukami Y, Li J, Graeme-Cook F, Chung DC (2005) Overexpression of cyclin D1 in pancreatic beta-cells in vivo results in islet hyperplasia without hypoglycemia. Diabetes 54(3):712–719PubMedCrossRefGoogle Scholar
  52. 52.
    Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA, Takane KK, Garcia-Ocana A, Vasavada R, Stewart AF (2006) Molecular control of cell cycle progression in the pancreatic beta-cell. Endocr Rev 27(4):356–370PubMedCrossRefGoogle Scholar
  53. 53.
    Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M (1995) Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 15(5):2612–2624PubMedGoogle Scholar
  54. 54.
    Malek TR, Yu A, Scibelli P, Lichtenheld MG, Codias EK (2001) Broad programming by IL-2 receptor signaling for extended growth to multiple cytokines and functional maturation of antigen-activated T cells. J Immunol 166(3):1675–1683PubMedGoogle Scholar
  55. 55.
    Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P (2003) Cyclin E ablation in the mouse. Cell 114(4): 431–443PubMedCrossRefGoogle Scholar
  56. 56.
    Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108(11):1631–1638PubMedGoogle Scholar
  57. 57.
    Friedrichsen BN, Richter HE, Hansen JA, Rhodes CJ, Nielsen JH, Billestrup N, Moldrup A (2003) Signal transducer and activator of transcription 5 activation is sufficient to drive transcriptional induction of cyclin D2 gene and proliferation of rat pancreatic beta-cells. Mol Endocrinol 17(5):945–958PubMedCrossRefGoogle Scholar
  58. 58.
    Brockman JL, Schuler LA (2005) Prolactin signals via Stat5 and Oct-1 to the proximal cyclin D1 promoter. Mol Cell Endocrinol 239(1–2):45–53PubMedCrossRefGoogle Scholar
  59. 59.
    Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, Brault V, Ruiz-Lozano P, Nguyen HD, Kemler R, Glass CK, Wynshaw-Boris A, Rosenfeld MG (2002) Identification of a Wnt/Dvl/beta-Catenin->Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111(5):673–685PubMedCrossRefGoogle Scholar
  60. 60.
    Chiles TC (2004) Regulation and function of cyclin D2 in B lymphocyte subsets. J Immunol 173(5):2901–2907PubMedGoogle Scholar
  61. 61.
    Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M, Luscher B (2001) Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Mycdependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 15(16):2042–2047PubMedCrossRefGoogle Scholar
  62. 62.
    Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443(7110):453–457PubMedCrossRefGoogle Scholar
  63. 63.
    Karnik SK, Hughes CM, Gu X, Rozenblatt-Rosen O, McLean GW, Xiong Y, Meyerson M, Kim SK (2005) Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci USA 102(41):14659–14664PubMedCrossRefGoogle Scholar
  64. 64.
    Franklin DS, Godfrey VL, O’Brien DA, Deng C, Xiong Y (2000) Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 20(16):6147–6158PubMedCrossRefGoogle Scholar
  65. 65.
    Pei XH, Bai F, Tsutsui T, Kiyokawa H, Xiong Y (2004) Genetic evidence for functional dependency of p18Ink4c on Cdk4. Mol Cell Biol 24(15):6653–6664PubMedCrossRefGoogle Scholar
  66. 66.
    Latres E, Malumbres M, Sotillo R, Martin J, Ortega S, Martin-Caballero J, Flores JM, Cordon-Cardo C, Barbacid M (2000) Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J 19(13):3496–3506PubMedCrossRefGoogle Scholar
  67. 67.
    Moritani M, Yamasaki S, Kagami M, Suzuki T, Yamaoka T, Sano T, Hata J, Itakura M (2005) Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-beta1. Mol Cell Endocrinol 229(1–2):175–184PubMedCrossRefGoogle Scholar
  68. 68.
    Rachdi L, Balcazar N, Elghazi L, Barker DJ, Krits I, Kiyokawa H, Bernal-Mizrachi E (2006) Differential effects of p27 in regulation of beta-cell mass during development, neonatal period, and adult life. Diabetes 55(12):3520–3528PubMedCrossRefGoogle Scholar
  69. 69.
    Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85(5):733–744PubMedCrossRefGoogle Scholar
  70. 70.
    Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY (1996) Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85(5):707–720PubMedCrossRefGoogle Scholar
  71. 71.
    Georgia S, Bhushan A (2006) p27 Regulates the transition of beta-cells from quiescence to proliferation. Diabetes 55(11):2950–2956PubMedCrossRefGoogle Scholar
  72. 72.
    Kaneto H, Kajimoto Y, Fujitani Y, Matsuoka T, Sakamoto K, Matsuhisa M, Yamasaki Y, Hori M (1999) Oxidative stress induces p21 expression in pancreatic islet cells: possible implication in beta-cell dysfunction. Diabetologia 42(9):1093–1097PubMedCrossRefGoogle Scholar
  73. 73.
    Cozar-Castellano I, Haught M, Stewart AF (2006) The cell cycle inhibitory protein p21cip is not essential for maintaining beta-cell cycle arrest or beta-cell function in vivo. Diabetes 55(12):3271–3278PubMedCrossRefGoogle Scholar
  74. 74.
    Kassem SA, Ariel I, Thornton PS, Hussain K, Smith V, Lindley KJ, Aynsley-Green A, Glaser B (2001) p57(KIP2) expression in normal islet cells and in hyperinsulinism of infancy. Diabetes 50(12):2763–2769PubMedCrossRefGoogle Scholar
  75. 75.
    Sempoux C, Guiot Y, Dahan K, Moulin P, Stevens M, Lambot V, de Lonlay P, Fournet JC, Junien C, Jaubert F, Nihoul-Fekete C, Saudubray JM, Rahier J (2003) The focal form of persistent hyperinsulinemic hypoglycemia of infancy: morphological and molecular studies show structural and functional differences with insulinoma. Diabetes 52(3):784–794PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387(6629):151–158PubMedCrossRefGoogle Scholar
  77. 77.
    Li FX, Zhu JW, Tessem JS, Beilke J, Varella-Garcia M, Jensen J, Hogan CJ, DeGregori J (2003) The development of diabetes in E2f1/E2f2 mutant mice reveals important roles for bone marrow-derived cells in preventing islet cell loss. Proc Natl Acad Sci USA 100(22):12935–12940PubMedCrossRefGoogle Scholar
  78. 78.
    Iglesias A, Murga M, Laresgoiti U, Skoudy A, Bernales I, Fullaondo A, Moreno B, Lloreta J, Field SJ, Real FX, Zubiaga AM (2004) Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice. J Clin Invest 113(10):1398–1407PubMedGoogle Scholar
  79. 79.
    Vasavada RC, Cozar-Castellano I, Sipula D, Stewart AF (2007) Tissue-specific deletion of the retinoblastoma protein in the pancreatic beta-cell has limited effects on beta-cell replication, mass, and function. Diabetes 56(1):57–64PubMedCrossRefGoogle Scholar
  80. 80.
    Fajas L, Landsberg RL, Huss-Garcia Y, Sardet C, Lees JA, Auwerx J (2002) E2Fs regulate adipocyte differentiation. Dev Cell 3(1):39–49PubMedCrossRefGoogle Scholar
  81. 81.
    Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96(3):329–339PubMedCrossRefGoogle Scholar
  82. 82.
    Otani K, Kulkarni RN, Baldwin AC, Krutzfeldt J, Ueki K, Stoffel M, Kahn CR, Polonsky KS (2004) Reduced beta-cell mass and altered glucose sensing impair insulinsecretory function in betaIRKO mice. Am J Physiol Endocrinol Metab 286(1): E41–E49PubMedCrossRefGoogle Scholar
  83. 83.
    Ueki K, Okada T, Hu J, Liew CW, Assmann A, Dahlgren GM, Peters JL, Shackman JG, Zhang M, Artner I, Satin LS, Stein R, Holzenberger M, Kennedy RT, Kahn CR, Kulkarni RN (2006) Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. Nat Genet 38(5):583–588PubMedCrossRefGoogle Scholar
  84. 84.
    Kubota N, Terauchi Y, Tobe K, Yano W, Suzuki R, Ueki K, Takamoto I, Satoh H, Maki T, Kubota T, Moroi M, Okada-Iwabu M, Ezaki O, Nagai R, Ueta Y, Kadowaki T, Noda T (2004) Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus. J Clin Invest 114(7):917–927PubMedGoogle Scholar
  85. 85.
    Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R, Tsubamoto Y, Komeda K, Nakano R, Miki H, Satoh S, Sekihara H, Sciacchitano S, Lesniak M, Aizawa S, Nagai R, Kimura S, Akanuma Y, Taylor SI, Kadowaki T (2000) Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 49(11):1880–1889PubMedCrossRefGoogle Scholar
  86. 86.
    Hashimoto N, Kido Y, Uchida T, Asahara S, Shigeyama Y, Matsuda T, Takeda A, Tsuchihashi D, Nishizawa A, Ogawa W, Fujimoto Y, Okamura H, Arden KC, Herrera PL, Noda T, Kasuga M (2006) Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet 38(5):589–593PubMedCrossRefGoogle Scholar
  87. 87.
    Stiles BL, Kuralwalla-Martinez C, Guo W, Gregorian C, Wang Y, Tian J, Magnuson MA, Wu H (2006) Selective deletion of Pten in pancreatic beta cells leads to increased islet mass and resistance to STZ-induced diabetes. Mol Cell Biol 26(7):2772–2781PubMedCrossRefGoogle Scholar
  88. 88.
    Tuttle RL, Gill NS, Pugh W, Lee JP, Koeberlein B, Furth EE, Polonsky KS, Naji A, Birnbaum MJ (2001) Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat Med 7(10):1133–1137PubMedCrossRefGoogle Scholar
  89. 89.
    Nakae J, Biggs WH, 3rd, Kitamura T, Cavenee WK, Wright CV, Arden KC, Accili D (2002) Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32(2):245–253PubMedCrossRefGoogle Scholar
  90. 90.
    Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404(6779):782–787PubMedCrossRefGoogle Scholar
  91. 91.
    Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22(22): 7842–7852PubMedCrossRefGoogle Scholar
  92. 92.
    Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH, 3rd, Wright CV, White MF, Arden KC, Accili D (2002) The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 110(12): 1839–1847PubMedGoogle Scholar
  93. 93.
    Kushner JA, Ye J, Schubert M, Burks DJ, Dow MA, Flint CL, Dutta S, Wright CV, Montminy MR, White MF (2002) Pdx1 restores beta cell function in Irs2 knockout mice. J Clin Invest 109(9):1193–1201PubMedGoogle Scholar
  94. 94.
    Biondi CA, Gartside MG, Waring P, Loffler KA, Stark MS, Magnuson MA, Kay GF, Hayward NK (2004) Conditional inactivation of the MEN1 gene leads to pancreatic and pituitary tumorigenesis but does not affect normal development of these tissues. Mol Cell Biol 24(8):3125–3131PubMedCrossRefGoogle Scholar
  95. 95.
    Bertolino P, Tong WM, Herrera PL, Casse H, Zhang CX, Wang ZQ (2003) Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res 63(16): 4836–4841PubMedGoogle Scholar
  96. 96.
    Pelengaris S, Khan M, Evan GI (2002) Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109(3):321–334PubMedCrossRefGoogle Scholar
  97. 97.
    Lawlor ER, Soucek L, Brown-Swigart L, Schhors K, Bialucha CU, Evan GI (2006) Reversible kinetic analysis of Myc targets in vivo provides novel insights into Myc-mediated tumorigenesis. Cancer Res 66(9):4591–4601PubMedCrossRefGoogle Scholar
  98. 98.
    Vasavada RC, Gonzalez-Pertusa JA, Fujinaka Y, Fiaschi-Taesch N, Cozar-Castellano I, Garcia-Ocana A (2006) Growth factors and beta cell replication. Int J Biochem Cell Biol 38(5–6):931–950PubMedCrossRefGoogle Scholar
  99. 99.
    Heit JJ, Karnik SK, Kim SK (2006) Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol 22:311–338PubMedCrossRefGoogle Scholar
  100. 100.
    Heit JJ, Apelqvist AA, Gu X, Winslow MM, Neilson JR, Crabtree GR, Kim SK (2006) Calcineurin/NFAT singalling regulates pancreatic beta-cell growth and function. Nature 443:345–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Seth J. Salpeter
    • 1
  • Yuval Dor
    • 1
  1. 1.Department of Cellular Biochemistry and Human GeneticsThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations