Advertisement

Regulation of Beta-Cell Growth and Death

  • Christopher J. Rhodes

Abstract

Pancreatic beta-cell mass, under normal circumstances, is maintained at an optimal level to provide for a normal metabolic load. It should not be viewed as static, and slow in turning over. Indeed, the adult beta-cells adults are plastic and able to increase their population to adapt to changes in metabolic demand, such as in pregnancy or nondiabetic obesity. Net changes in beta-cell mass are reflective of the amount of growth (i.e., the sum of betacell replication, neogenesis and size) minus the degree of beta-cell death (i.e., the sum of beta-cell apoptosis, necrosis and autophagic cell death). In some circumstances, such as prolonged obesity and insulin resistance, the beta-cell works under pressure trying to meet the metabolic demand, but eventually succumbs to a collective number of stresses that lead to an increase in beta-cell death, a subsequent reduction in beta-cell mass, and the eventual onset of type 2 diabetes. In this chapter, what is currently known about mechanisms of beta-cell growth and death are looked at in detail, with an emphasis on adaptive mechanisms in obesity and pregnancy and the signal transduction pathways involved in the control of beta-cell growth. Also, the various stresses on the beta cell that may lead to the onset of type 2 diabetes will be outlined and the inflammatory signaling pathways that contribute to increased beta-cell apoptosis/necrosis examined.

Keywords

Beta Cell Autophagic Cell Death Islet Beta Cell Insulin Secretory Dysfunction Nondiabetic Obesity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rhodes CJ (2005) Type-2 diabetes—a matter of beta-cell life and death? Science 307:380–384PubMedCrossRefGoogle Scholar
  2. 2.
    Lingohr MK, Buettner R, Rhodes CJ (2002) Pancreatic beta-cell growth and survival—a role in obesity-linked type 2 diabetes? Trends Mol Med 8:375–384PubMedCrossRefGoogle Scholar
  3. 3.
    Atkinson MA, Maclaren NK (1994) The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 331:1428–1436PubMedCrossRefGoogle Scholar
  4. 4.
    Mauricio D, Mandrup-Poulsen T (1998) Apoptosis and the pathogenesis of IDDM: a question of life and death. Diabetes 47:1537–1543PubMedCrossRefGoogle Scholar
  5. 5.
    Kahn SE (2001) Clinical review 135: The importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab 86: 4047–4058PubMedCrossRefGoogle Scholar
  6. 6.
    Kahn SE (2001) Beta cell failure: causes and consequences. Int J Clin Pract Suppl: 13–18Google Scholar
  7. 7.
    Leahy JL (1990) Natural history of B-cell dysfunction in NIDDM. Diabetes Care 13:992–1010PubMedCrossRefGoogle Scholar
  8. 8.
    Butler AE, Janson J, Bonner-Weir S, Ritzel RA, Butler PC (2002) Decreased beta-cell mass in patients with type-2 diabetes mellitus. Diabetes 51Suppl.2: 1502AGoogle Scholar
  9. 9.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRefGoogle Scholar
  10. 10.
    Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU (1985) Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res 4:110–125PubMedGoogle Scholar
  11. 11.
    Mclean N, Ogilvie RF (1955) Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes 4:367–376Google Scholar
  12. 12.
    Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45:85–96PubMedCrossRefGoogle Scholar
  13. 13.
    Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, Yoo SJ, Kang MI, Cha BY, Lee KW, Son HY, Kang KS, Kim HS, Lee IK, Bonner-Weir S (2003) Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 88:2300–2308PubMedCrossRefGoogle Scholar
  14. 14.
    Bonner-Weir S (2000) Perspective: Postnatal pancreatic beta cell growth. Endocrinology 141:1926–1929PubMedCrossRefGoogle Scholar
  15. 15.
    Bonner-Weir S (2000) Life and death of the pancreatic beta cells. Trends Endocrinol Metab 11:375–378PubMedCrossRefGoogle Scholar
  16. 16.
    Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA (2005) Very slow turnover of beta cells in aged adult mice. Diabetes 54:2557–2567PubMedCrossRefGoogle Scholar
  17. 17.
    Georgia S, Bhushan A (2004) Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest 114:963–968PubMedGoogle Scholar
  18. 18.
    Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY, Sicinski P, White MF (2005) Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol 25:3752–3762PubMedCrossRefGoogle Scholar
  19. 19.
    Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22:44–52PubMedCrossRefGoogle Scholar
  20. 20.
    Bonner-Weir S (1992) Two pathways of beta-cell growth in the regenerating rat pancreas: Implications for islet transplantation. Diabetes Nutr Metab 5(Suppl 1):1–3Google Scholar
  21. 21.
    Pictet R, Rutter WJ (1972) Development of the embryonic pancreas. In: Greep RO, Astwood EB (eds) Handbook of physiology: a critical comprehensive presentation of physiologic knowledge and concepts. Baltimore: Williams & Wilkins, Baltimore, pp 25–66Google Scholar
  22. 22.
    Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta cells are formed by self-duplication rather than stem-cell differentiation. Nature 429: 41–46PubMedCrossRefGoogle Scholar
  23. 23.
    Matveyenko AV, Butler PC (2006) Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. Ilar J 47:225–233PubMedGoogle Scholar
  24. 24.
    Donath MY, Halban PA (2004) Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47:581–589PubMedCrossRefGoogle Scholar
  25. 25.
    Atkinson MA, Rhodes CJ (2005) Pancreatic regeneration in type 1 diabetes: dreams on a deserted islet? Diabetologia 48:2200–2202PubMedCrossRefGoogle Scholar
  26. 26.
    Inada A, Nienaber C, Fonseca S, Bonner-Weir S (2006) Timing and expression pattern of carbonic anhydrase II in pancreas. Dev Dyn 235:1571–1577PubMedCrossRefGoogle Scholar
  27. 27.
    Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50:521–533PubMedCrossRefGoogle Scholar
  28. 28.
    Lardon J, Rooman I, Bouwens L (2002) Nestin expression in pancreatic stellate cells and angiogenic endothelial cells. Histochem Cell Biol 117:535–540PubMedCrossRefGoogle Scholar
  29. 29.
    Delacour A, Nepote V, Trumpp A, Herrera PL (2004) Nestin expression in pancreatic exocrine cell lineages. Mech Dev 121:3–14PubMedCrossRefGoogle Scholar
  30. 30.
    Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 24:1715–1720CrossRefGoogle Scholar
  31. 31.
    Baggio LL, Drucker DJ (2006) Therapeutic approaches to preserve islet mass in type 2 diabetes. Annu Rev Med 57:265–281PubMedCrossRefGoogle Scholar
  32. 32.
    Xu G, Kaneto H, Lopez-Avalos MD, Weir GC, Bonner-Weir S (2006) GLP-1/exendin-4 facilitates beta-cell neogenesis in rat and human pancreatic ducts. Diabetes Res Clin Pract 73:107–110PubMedCrossRefGoogle Scholar
  33. 33.
    Betsholtz C, Christmansson L, Engstrom U, Rorsman F, Svensson V, Johnson KH, Westermark P (1989) Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species. FEBS Lett 251:261–264PubMedCrossRefGoogle Scholar
  34. 34.
    De Leon DD, Deng S, Madani R, Ahima RS, Drucker DJ, Stoffers DA (2003) Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes 52:365–371PubMedCrossRefGoogle Scholar
  35. 35.
    Suarez-Pinzon WL, Yan Y, Power R, Brand SJ, Rabinovitch A (2005) Combination therapy with epidermal growth factor and gastrin increases beta-cell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes 54:2596–2601PubMedCrossRefGoogle Scholar
  36. 36.
    McDaniel ML, Marshall CA, Pappan KL, Kwon G (2002) Metabolic and Autocrine Regulation of the Mammalian Target of Rapamycin by Pancreatic beta-Cells. Diabetes 51:2877–2885PubMedCrossRefGoogle Scholar
  37. 37.
    Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML (2001) Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta cells. Diabetes 50:353–356PubMedCrossRefGoogle Scholar
  38. 38.
    Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, Klumperman J, Thorens B, Thomas G (2000) Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408:994–997PubMedCrossRefGoogle Scholar
  39. 39.
    Hui H, Wright C, Perfetti R (2001) Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells. Diabetes 50:785–796PubMedCrossRefGoogle Scholar
  40. 40.
    Gershengorn MC, Hardikar AA, Wei C, Geras-Raaka E, Marcus-Samuels B, Raaka BM (2004) Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306:2261–2264PubMedCrossRefGoogle Scholar
  41. 41.
    Yew KH, Prasadan KL, Preuett BL, Hembree MJ, McFall CR, Benjes CL, Crowley AR, Sharp SL, Li Z, Tulachan SS, Mehta SS, Gittes GK (2004) Interplay of glucagon-like peptide-1 and transforming growth factor-beta signaling in insulin-positive differentiation of AR42J cells. Diabetes 53:2824–2835PubMedCrossRefGoogle Scholar
  42. 42.
    Zhou J, Wang X, Pineyro MA, Egan JM (1999) Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon-and insulin-producing cells. Diabetes 48:2358–2366PubMedCrossRefGoogle Scholar
  43. 43.
    Palgi J, Stumpf E, Otonkoski T (2000) Transcription factor expression and hormone production in pancreatic AR42J cells. Mol Cell Endocrinol 165:41–49PubMedCrossRefGoogle Scholar
  44. 44.
    Herrera PL, Nepote V, Delacour A (2002) Pancreatic cell lineage analyses in mice. Endocrine 19:267–278PubMedCrossRefGoogle Scholar
  45. 45.
    Kockel L, Strom A, Delacour A, Nepote V, Hagenbuchle O, Wellauer PK, Herrera PL (2006) An amylase/Cre transgene marks the whole endoderm but the primordia of liver and ventral pancreas. Genesis 44:287–296PubMedCrossRefGoogle Scholar
  46. 46.
    Desai BM, Oliver-Krasinski J, De Leon DD, Farzad C, Hong N, Leach SD, Stoffers DA (2007) Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest 117:971–977PubMedCrossRefGoogle Scholar
  47. 47.
    Samson SL, Chan L (2006) Gene therapy for diabetes: reinventing the islet. Trends Endocrinol Metab 17:92–100PubMedCrossRefGoogle Scholar
  48. 48.
    Sapir T, Shternhall K, Meivar-Levy I, Blumenfeld T, Cohen H, Skutelsky E, Eventov-Friedman S, Barshack I, Goldberg I, Pri-Chen S, Ben-Dor L, Polak-Charcon S, Karasik A, Shimon I, Mor E, Ferber S (2005) Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci USA 102:7964–7969PubMedCrossRefGoogle Scholar
  49. 49.
    Sorenson RL, Brelje TC (1997) Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 29:301–307PubMedCrossRefGoogle Scholar
  50. 50.
    Scaglia L, Smith FE, Bonner-Weir S (1995) Apoptosis contributes to the involution of beta cell mass in the post partum rat pancreas. Endocrinology 136:5461–5468PubMedCrossRefGoogle Scholar
  51. 51.
    Halban PA, Powers SL, George KL, Bonner-Weir S (1987) Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. Diabetes 36:783–790PubMedCrossRefGoogle Scholar
  52. 52.
    Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669PubMedCrossRefGoogle Scholar
  53. 53.
    Lockshin RA, Zakeri Z (2004) Caspase-independent cell death? Oncogene 23: 2766–2773PubMedCrossRefGoogle Scholar
  54. 54.
    Zong WX, Ditsworth D, Bauer DE Wang ZQ Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18: 1272–1282PubMedCrossRefGoogle Scholar
  55. 55.
    Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15PubMedCrossRefGoogle Scholar
  56. 56.
    Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419PubMedCrossRefGoogle Scholar
  57. 57.
    Yan N, Shi Y (2005) Mechanisms of apoptosis through structural biology. Annu Rev Cell Biol Dev 21:35–56CrossRefGoogle Scholar
  58. 58.
    Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245PubMedCrossRefGoogle Scholar
  59. 59.
    Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688PubMedCrossRefGoogle Scholar
  60. 60.
    Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77PubMedCrossRefGoogle Scholar
  61. 61.
    Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995PubMedCrossRefGoogle Scholar
  62. 62.
    Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510PubMedCrossRefGoogle Scholar
  63. 63.
    Yu L, Lenardo MJ, Baehrecke EH (2004) Autophagy and caspases: a new cell death program. Cell Cycle 3:1124–1126PubMedGoogle Scholar
  64. 64.
    Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263:55–72PubMedCrossRefGoogle Scholar
  65. 65.
    Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721PubMedCrossRefGoogle Scholar
  66. 66.
    Delaney CA, Pavlovic D, Hoorens A, Pipeleers DG, Eizirik DL (1997) Cytokines induce deoxyribonucleic acid strand breaks and apoptosis in human pancreatic islet cells. Endocrinology 138:2610–2614PubMedCrossRefGoogle Scholar
  67. 67.
    Davalli AM, Ogawa Y, Ricordi C, Scharp DW, Bonner-Weir S, Weir GC (1995) A selective decrease in the beta cell mass of human islets transplanted into diabetic nude mice. Transplantation 59:817–820PubMedCrossRefGoogle Scholar
  68. 68.
    Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47:358–364PubMedCrossRefGoogle Scholar
  69. 69.
    Donath MY, Storling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med 81:455–470PubMedCrossRefGoogle Scholar
  70. 70.
    Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP (2001) The continuing epidemics of obesity and diabetes in the United States. JAMA 286:1195–1200PubMedCrossRefGoogle Scholar
  71. 71.
    Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787PubMedCrossRefGoogle Scholar
  72. 72.
    Butler AE, Janson J, Soeller WC, Butler PC (2003) Increased beta cell apoptosis prevents adaptive increase in beta cell mass in a mouse model of type-2 diabetes; Evidence for a role of islet amyloid formation rather than a direct action of amyloid. Diabetes 52:2304–2314PubMedCrossRefGoogle Scholar
  73. 73.
    Koyama M, Wada R, Mizukami H, Sakuraba H, Odaka H, Ikeda H, Yagihashi S (2000) Inhibition of progressive reduction of islet beta-cell mass in spontaneously diabetic Goto-Kakizaki rats by alpha-glucosidase inhibitor. Metabolism 49:347–352PubMedCrossRefGoogle Scholar
  74. 74.
    Shafrir E, Ziv E, Mosthaf L (1999) Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci 892:223–246PubMedCrossRefGoogle Scholar
  75. 75.
    Kajimoto Y, Kaneto H (2004) Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci 1011:168–176PubMedCrossRefGoogle Scholar
  76. 76.
    Clark A, Jones LC, de Koning E, Hansen BC, Matthews DR (2001) Decreased insulin secretion in type 2 diabetes: a problem of cellular mass or function? Diabetes 50Suppl 1:S169–S171PubMedCrossRefGoogle Scholar
  77. 77.
    Jaikaran ET, Clark A (2001) Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta 1537:179–203PubMedGoogle Scholar
  78. 78.
    Weir GC, Bonner-Weir S (2004) Five stages of evolving Beta-cell dysfunction during progression to diabetes. Diabetes 53Suppl 3:S16–S21PubMedCrossRefGoogle Scholar
  79. 79.
    Porte D, Jr., Kahn SE (2001) beta-cell dysfunction and failure in type 2 diabetes: potential mechanisms. Diabetes 50Suppl 1:S160–S163PubMedCrossRefGoogle Scholar
  80. 80.
    Dickson L, Rhodes CJ (2004) Pancreatic beta-cell growth and survival in the onset of type-2 diabetes: A role for protein kinase-B in the Akt? Am J Physiol 287: E192–E198CrossRefGoogle Scholar
  81. 81.
    Ozanne SE, Hales CN (2002) Early programming of glucose-insulin metabolism. Trends Endocrinol Metab 13:368–373PubMedCrossRefGoogle Scholar
  82. 82.
    Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176PubMedCrossRefGoogle Scholar
  83. 83.
    Shoelson SE, Lee J, Yuan M (2003) Inflammation and the IKK beta/I kappa B/NFkappa B axis in obesity-and diet-induced insulin resistance. Int J Obes Relat Metab Disord Suppl 3:S49–S52CrossRefGoogle Scholar
  84. 84.
    Boden G, Shulman GI (2002) Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32 Suppl 3:14–23PubMedCrossRefGoogle Scholar
  85. 85.
    Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119PubMedCrossRefGoogle Scholar
  86. 86.
    Pirola L, Johnston AM, Van Obberghen E (2004) Modulation of insulin action. Diabetologia 47:170–184PubMedCrossRefGoogle Scholar
  87. 87.
    Moller DE, Kaufman KD (2005) Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 56:45–62PubMedCrossRefGoogle Scholar
  88. 88.
    Kahn SE, Prigeon RL, Schwartz RS, Fujimoto WY, Knopp RH, Brunzell JD, Porte D, Jr (2001) Obesity, body fat distribution, insulin sensitivity and Islet beta-cell function as explanations for metabolic diversity. J Nutr 131:354S–360SPubMedGoogle Scholar
  89. 89.
    Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789PubMedCrossRefGoogle Scholar
  90. 90.
    Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51;Suppl 3:S455–S461PubMedCrossRefGoogle Scholar
  91. 91.
    Araki E, Oyadomari S, Mori M (2003) Endoplasmic reticulum stress and diabetes mellitus. Intern Med 42:7–14PubMedCrossRefGoogle Scholar
  92. 92.
    Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL, Baskin CR, MacAuley A, Goodman AG, LeBoeuf RC, Katze MG (2005) Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 54:1074–1081PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J, Gannon M, Ma K, McNaughton K, Cavener DR (2002) The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22:3864–3874PubMedCrossRefGoogle Scholar
  94. 94.
    Tang QQ, Lane MD (2000) Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer-binding protein-beta during adipogenesis. Proc Natl Acad Sci USA 97:12446–12450PubMedCrossRefGoogle Scholar
  95. 95.
    Batchvarova N, Wang XZ, Ron D (1995) Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J 14:4654–4661PubMedGoogle Scholar
  96. 96.
    Izumi T, Yokota-Hashimoto H, Zhao S, Wang J, Halban PA, Takeuchi T (2003) Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52:409–416PubMedCrossRefGoogle Scholar
  97. 97.
    Ueda K, Kawano J, Takeda K, Yujiri T, Tanabe K, Anno T, Akiyama M, Nozaki J, Yoshinaga T, Koizumi A, Shinoda K, Oka Y, Tanizawa Y (2005) Endoplasmic reticulum stress induces Wfs1 gene expression in pancreatic beta cells via transcriptional activation. Eur J Endocrinol 153:167–176PubMedCrossRefGoogle Scholar
  98. 98.
    Fonseca SG, Fukuma M, Lipson KL, Nguyen LX, Allen JR, Oka Y, Urano F (2005) WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta cells. J Biol Chem 280: 39609–39615PubMedCrossRefGoogle Scholar
  99. 99.
    Riggs AC, Bernal-Mizrachi E, Ohsugi M, Wasson J, Fatrai S, Welling C, Murray J, Schmidt RE, Herrera PL, Permutt MA (2005) Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 48:2313–2321PubMedCrossRefGoogle Scholar
  100. 100.
    Wang H, Kouri G, Wollheim CB (2005) ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 118:3905–3915PubMedCrossRefGoogle Scholar
  101. 101.
    Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147:3398–3407PubMedCrossRefGoogle Scholar
  102. 102.
    Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira S, Araki E, Mori M (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA 98:10845–10850PubMedCrossRefGoogle Scholar
  103. 103.
    Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, Van Eylen F, Mandrup-Poulsen T, Herchuelz A, Eizirik DL (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta cells. Diabetes 54:452–461PubMedCrossRefGoogle Scholar
  104. 104.
    Cooper GJS, Willis AC, Clark A, Turner RC, Sim RB, Reid KBM (1987) Purification and characterisation of a peptide from amyloid-rich pancreases of type-2 diabetes patients. Proc Natl Acad Sci USA 84:8628–8632PubMedCrossRefGoogle Scholar
  105. 105.
    Alarcon C, Verchere CB, Rhodes CJ (2007) Glucose-induced translational regulation of islet amyloid polypeptide biosynthesis in rat pancreatic islets. Diabetologia 50: submittedGoogle Scholar
  106. 106.
    Meier JJ, Kayed R, Lin CY, Gurlo T, Haataja L, Jayasinghe S, Langen R, Glabe CC, Butler PC (2006) Inhibition of hIAPP fibril formation does not prevent beta-cell death: Evidence for distinct actions of oligomers and fibrils of hIAPP. Am J Physiol Endocrinol Metab 291:E1317–E1324PubMedCrossRefGoogle Scholar
  107. 107.
    Unger RH, Zhou Y (2001) Lipotoxicity of beta cells in obesity and in other causes of fatty acid spillover. Diabetes 50Suppl 1:S118–S121PubMedCrossRefGoogle Scholar
  108. 108.
    Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116:1802–1812PubMedCrossRefGoogle Scholar
  109. 109.
    Wrede C, Dickson LM, Lingohr MK, Briaud I, Rhodes CJ (2003) Modulation of mitogenic signaling pathways by conventional and novel protein kinase-C isoforms in pancreatic beta cells (INS-1). J Mol Endocrinol 30:271–286PubMedCrossRefGoogle Scholar
  110. 110.
    Stratford S, DeWald DB, Summers SA (2001) Ceramide dissociates 3′-phosphoinositide production from pleckstrin homology domain translocation. Biochem J 354:359–368PubMedCrossRefGoogle Scholar
  111. 111.
    Chan CB, Saleh MC, Koshkin V, Wheeler MB (2004) Uncoupling protein 2 and islet function. Diabetes 53Suppl.1:S136–142PubMedCrossRefGoogle Scholar
  112. 112.
    Poitout V (2004) Beta-cell lipotoxicity: burning fat into heat? Endocrinology 145:3563–3565PubMedCrossRefGoogle Scholar
  113. 113.
    Biden TJ, Robinson D, Cordery D, Hughes WE, Busch AK (2004) Chronic effects of fatty acids on pancreatic beta-cell function: new insights from functional genomics. Diabetes 53Suppl.1:S159–S165PubMedCrossRefGoogle Scholar
  114. 114.
    Prentki M, Joly E, El-Assaad W, Roduit R (2002) Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 51Suppl.3:S405–S413PubMedCrossRefGoogle Scholar
  115. 115.
    Deeney JT, Prentki M, Corkey BE (2000) Metabolic control of beta-cell function. Semin Cell Dev Biol 11:267–275PubMedCrossRefGoogle Scholar
  116. 116.
    Newgard CB, McGarry JD (1995) Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem 64:689–719PubMedCrossRefGoogle Scholar
  117. 117.
    Fridlyand LE, Philipson LH (2006) Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes Obes Metab 8:136–145PubMedCrossRefGoogle Scholar
  118. 118.
    Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466PubMedCrossRefGoogle Scholar
  119. 119.
    Robertson RP, Harmon JS (2006) Diabetes, glucose toxicity, and oxidative stress: A case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med 41:177–184PubMedCrossRefGoogle Scholar
  120. 120.
    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833PubMedCrossRefGoogle Scholar
  121. 121.
    Armstrong JS (2006) Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays 28:253–260PubMedCrossRefGoogle Scholar
  122. 122.
    Briaud I, Dickson LM, Lingohr MK, McCuaig JF, Lawrence JC, Rhodes CJ (2005) IRS-2 proteasomal degradation mediated by a mTOR-induced negative feedback downregulates PKB-mediated signaling pathway in beta cells. J Biol Chem 280: 2282–2293PubMedCrossRefGoogle Scholar
  123. 123.
    Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860PubMedGoogle Scholar
  124. 124.
    Wicksteed BL, Alarcón C, Briaud I, Dickson L, Lingohr MK, Rhodes CJ (2003) Glucose-induced translational control of proinsulin biosynthesis is proportional to preproinsulin mRNA levels, but not regulated via a positive feedback of secreted insulin on in islet beta cells. J Biol Chem 278:42080–42090PubMedCrossRefGoogle Scholar
  125. 125.
    Schnell AH, Swenne I, Borg LA (1988) Lysosomes and pancreatic islet function. A quantitative estimation of crinophagy in the mouse pancreatic B-cell. Cell Tissue Res 252:9–15PubMedCrossRefGoogle Scholar
  126. 126.
    Halban PA (1991) Structural domains and molecular lifestyles of insulin and its precursors in the pancreatic beta cell. Diabetologia 34:767–778PubMedCrossRefGoogle Scholar
  127. 127.
    Kloppel G, Ruttmann E, Bommer G, Schafer HJ (1976) Crinophagy and insulin secretion. B cell morphology after various inhibition of insulin secretion. Verh Dtsch Ges Pathol:220–224Google Scholar
  128. 128.
    Skoglund G, Ahren B, Lundquist I (1987) Biochemical determination of islet lysosomal enzyme activities following crinophagy-stimulating treatment with diazoxide in mice. Diabetes Res 6:81–84PubMedGoogle Scholar
  129. 129.
    Alarcón C, Leahy JL, Schuppin GT, Rhodes CJ (1995) Hyperproinsulinemia in a glucose-infusion rat model of non insulin dependent diabetes melitus is a symptom of increased secretory demand rather than a defect in the proinsulin conversion mechanism. J Clin Invest 95:1032–1039PubMedCrossRefGoogle Scholar
  130. 130.
    Nielsen JH, Galsgaard ED, Moldrup A, Friedrichsen BN, Billestrup N, Hansen JA, Lee YC, Carlsson C (2001) Regulation of beta-cell mass by hormones and growth factors. Diabetes 50Suppl.1:S25–S29PubMedCrossRefGoogle Scholar
  131. 131.
    Friedrichsen BN, Richter HE, Hansen JA, Rhodes CJ, Nielsen JH, Billestrup N, Moldrup A (2003) STAT5 activation is sufficient to drive transcriptional induction of the cyclinD2 gene and proliferation of rat pancreatic beta cells. Mol Endocrinol 17:945–958PubMedCrossRefGoogle Scholar
  132. 132.
    Grad JM, Zeng XR, Boise LH (2000) Regulation of Bcl-xL: a little bit of this and a little bit of STAT. Curr Opin Oncol 12:543–549PubMedCrossRefGoogle Scholar
  133. 133.
    Rhodes CJ, White MF (2002) Molecular insights into insulin action and secretion. Eur J Clin Invest 32Suppl.3:3–13PubMedCrossRefGoogle Scholar
  134. 134.
    Withers DJ, Gutierres JS, Towery H, Ren J-M., Burks DJ, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 causes type-2 diabetes in mice. Nature 391:900–904PubMedCrossRefGoogle Scholar
  135. 135.
    Myers MG, White MF (1996) Insulin signal transduction and IRS proteins. Annu Rev Pharmacol Toxicol 36:615–658PubMedCrossRefGoogle Scholar
  136. 136.
    White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413–E422PubMedGoogle Scholar
  137. 137.
    Khoo S, Griffen SC, Xia Y, Baer RJ, German MS, Cobb MH (2003) Regulation of insulin gene transcription by extracellular-signal regulated protein kinases (ERK) 1 and 2 in pancreatic beta cells. J Biol Chem 278:32969–32977PubMedCrossRefGoogle Scholar
  138. 138.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  139. 139.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101PubMedCrossRefGoogle Scholar
  140. 140.
    Dickson LM, Lingohr MK, McCuaig J, Hugl SR, Snow L, Kahn BB, Myers MG, Jr., Rhodes CJ (2001) Differential activation of protein kinase B and p70(S6)K by glucose and insulin-like growth factor 1 in pancreatic beta cells (INS-1). J Biol Chem 276:21110–21120PubMedCrossRefGoogle Scholar
  141. 141.
    Farese RV (2002) Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 283: E1–E11PubMedGoogle Scholar
  142. 142.
    Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M (2001) Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 50:2237–2243PubMedCrossRefGoogle Scholar
  143. 143.
    Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664PubMedCrossRefGoogle Scholar
  144. 144.
    Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927PubMedCrossRefGoogle Scholar
  145. 145.
    Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114:2903–2910PubMedGoogle Scholar
  146. 146.
    Mayo L, Donner D (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27:462PubMedCrossRefGoogle Scholar
  147. 147.
    Trumper A, Trumper K, Trusheim H, Arnold R, Goke B, Horsch D (2001) Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 15:1559–1570PubMedCrossRefGoogle Scholar
  148. 148.
    Briaud I, Lingohr MK, Dickson L, Wrede C, Rhodes CJ (2003) Differential activation mechanisms of Erk-1/2 and p70S6K by glucose in pancreatic beta cells. Diabetes 52:974–983PubMedCrossRefGoogle Scholar
  149. 130.
    Nielsen JH, Galsgaard ED, Moldrup A, Friedrichsen BN, Billestrup N, Hansen JA, Lee YC, Carlsson C (2001) Regulation of beta-cell mass by hormones and growth factors. Diabetes 50Suppl.1:S25–S29PubMedCrossRefGoogle Scholar
  150. 131.
    Friedrichsen BN, Richter HE, Hansen JA, Rhodes CJ, Nielsen JH, Billestrup N, Moldrup A (2003) STAT5 activation is sufficient to drive transcriptional induction of the cyclinD2 gene and proliferation of rat pancreatic beta cells. Mol Endocrinol 17:945–958PubMedCrossRefGoogle Scholar
  151. 132.
    Grad JM, Zeng XR, Boise LH (2000) Regulation of Bcl-xL: a little bit of this and a little bit of STAT. Curr Opin Oncol 12:543–549PubMedCrossRefGoogle Scholar
  152. 133.
    Rhodes CJ, White MF (2002) Molecular insights into insulin action and secretion. Eur J Clin Invest 32Suppl.3:3–13PubMedCrossRefGoogle Scholar
  153. 134.
    Withers DJ, Gutierres JS, Towery H, Ren J-M., Burks DJ, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 causes type-2 diabetes in mice. Nature 391:900–904PubMedCrossRefGoogle Scholar
  154. 135.
    Myers MG, White MF (1996) Insulin signal transduction and IRS proteins. Annu Rev Pharmacol Toxicol 36:615–658PubMedCrossRefGoogle Scholar
  155. 136.
    White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413–E422PubMedGoogle Scholar
  156. 137.
    Khoo S, Griffen SC, Xia Y, Baer RJ, German MS, Cobb MH (2003) Regulation of insulin gene transcription by extracellular-signal regulated protein kinases (ERK) 1 and 2 in pancreatic beta cells. J Biol Chem 278:32969–32977PubMedCrossRefGoogle Scholar
  157. 138.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  158. 139.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101PubMedCrossRefGoogle Scholar
  159. 140.
    Dickson LM, Lingohr MK, McCuaig J, Hugl SR, Snow L, Kahn BB, Myers MG, Jr., Rhodes CJ (2001) Differential activation of protein kinase B and p70(S6)K by glucose and insulin-like growth factor 1 in pancreatic beta cells (INS-1). J Biol Chem 276:21110–21120PubMedCrossRefGoogle Scholar
  160. 141.
    Farese RV (2002) Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 283: E1–E11PubMedGoogle Scholar
  161. 142.
    Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M (2001) Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 50:2237–2243PubMedCrossRefGoogle Scholar
  162. 143.
    Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664PubMedCrossRefGoogle Scholar
  163. 144.
    Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927PubMedCrossRefGoogle Scholar
  164. 145.
    Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114:2903–2910PubMedGoogle Scholar
  165. 146.
    Mayo L, Donner D (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27:462PubMedCrossRefGoogle Scholar
  166. 147.
    Trumper A, Trumper K, Trusheim H, Arnold R, Goke B, Horsch D (2001) Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 15:1559–1570PubMedCrossRefGoogle Scholar
  167. 148.
    Briaud I, Lingohr MK, Dickson L, Wrede C, Rhodes CJ (2003) Differential activation mechanisms of Erk-1/2 and p70S6K by glucose in pancreatic beta cells. Diabetes 52:974–983PubMedCrossRefGoogle Scholar
  168. 149.
    Gomez E, Pritchard C, Herbert TP (2002) cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic beta cells. J Biol Chem 277:48146–48151PubMedCrossRefGoogle Scholar
  169. 150.
    Lingohr MK, Briaud I, Dickson LM, McCuaig JF, Alarcon C, Wicksteed BL, Rhodes CJ (2006) Specific regulation of IRS-2 expression by glucose in rat primary pancreatic islet beta cells. J Biol Chem 281:15884–15892PubMedCrossRefGoogle Scholar
  170. 151.
    Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M (2003) cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev 17:1575–1580PubMedCrossRefGoogle Scholar
  171. 152.
    Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF (1999) Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet 23:32–40PubMedGoogle Scholar
  172. 153.
    Hennige AM, Burks DJ, Ozcan U, Kulkarni RN, Ye J, Park S, Schubert M, Fisher TL, Dow MA, Leshan R, Zakaria M, Mossa-Basha M, White MF (2003) Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 112:1521–1532PubMedGoogle Scholar
  173. 154.
    Hashimoto N, Kido Y, Uchida T, Asahara S, Shigeyama Y, Matsuda T, Takeda A, Tsuchihashi D, Nishizawa A, Ogawa W, Fujimoto Y, Okamura H, Arden KC, Herrera PL, Noda T, Kasuga M (2006) Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet 38:589–593PubMedCrossRefGoogle Scholar
  174. 155.
    Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108:1631–1638PubMedGoogle Scholar
  175. 156.
    Tuttle RL, Gill NS, Pugh W, Lee JP, Koeberlein B, Furth EE, Polonsky KS, Naji A, Birnbaum MJ (2001) Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat Med 7:1133–1137PubMedCrossRefGoogle Scholar
  176. 157.
    Lee NK, Lee SY (2002) Modulation of life and death by tumor necrosis factor receptor associated factors (TRAFs). J Biochem Mol Biol 35:61–66PubMedGoogle Scholar
  177. 158.
    Bradley JR, Pober JS (2001) Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20:6482–6491PubMedCrossRefGoogle Scholar
  178. 159.
    Mercurio F, Manning AM (1999) Multiple signals converging on NF-kappaB. Curr Opin Cell Biol 11:226–232PubMedCrossRefGoogle Scholar
  179. 160.
    Liu ZG (2005) Molecular mechanism of TNF signaling and beyond. Cell Res 15: 24–27PubMedCrossRefGoogle Scholar
  180. 161.
    Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222–228PubMedCrossRefGoogle Scholar
  181. 162.
    Kerr IM, Costa-Pereira AP, Lillemeier BF, Strobl B (2003) Of JAKs, STATs, blind watchmakers, jeeps and trains. FEBS Lett 546:1–5PubMedCrossRefGoogle Scholar
  182. 163.
    Rui L, Yuan M, Frantz D, Shoelson S, White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277:42394–42398PubMedCrossRefGoogle Scholar
  183. 164.
    Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24: 5434–5446PubMedCrossRefGoogle Scholar
  184. 165.
    Zick Y (2001) Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol 11:437–441PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Christopher J. Rhodes
    • 1
  1. 1.Department of Medicine, Section of Endocrinology, Diabetes, and MetabolismUniversity of ChicagoChicagoUSA

Personalised recommendations