Advertisement

Recent Progress on Paired Immunoglobulin-Like Receptors

  • Hiromi Kubagawa
  • Ching-Cheng Chen
  • Ikuko Torii
  • Max D. Cooper
  • Kyoko Masuda
  • Yoshimoto Katsura
  • Hiroshi Kawamoto

Abstract

Almost 10 years ago the Takai and Kubagawa laboratories independently identified the paired immunoglobulin-like receptors (PIRs) in mice based on limited homology with the human Fcα receptor/CD89 (Hayami et al. 1997; Kubagawa et al. 1997). Two PIR isoforms were identified on the basis of their signaling properties as activating (PIR-A) and inhibitory (PIR-B) types. Pir is a multigene family located on the proximal end of mouse chromosome 7 (Kubagawa et al. 1997; Tun et al. 2003; Yamashita et al. 1998a), in a region syntenic with the human chromosome 19q13 where a cluster of structurally related gene families called the leukocyte receptor complex resides. Among these human genes are the closest PIR homologs, the immunoglobulin (Ig)-like transcripts (ILTs) [also called leukocyte Ig-like receptors (LIRs), monocyte/macrophage Ig-like receptors or CD85; see the new LILR nomenclature at www.gene.ucl.ac.uk/nomenclature/genefamily/lilr.html] (Arm et al. 1997; Barten et al. 2001; Colonna et al. 1999; Cosman et al. 1999; Long 1999; Martin et al. 2002; Wagtmann et al. 1997). Paired immunoglobulin-like receptor-A and PIR-B are cell surface glycoproteins with very similar extracellular regions (>92% homology) containing six Ig-like domains, but with structurally and functionally distinct transmembrane and cytoplasmic regions (see Fig. 1). There are multiple PIR-A isoforms (>6), each encoded by a different Pira gene. Paired immunoglobulin-like receptor-As associate non-covalently with the Fc receptor common γ chain (FcRγc), a transmembrane signal transducer that contains immunoreceptor tyrosine-based activation motif (ITAM) “D/ExxYxxL/Ix6–8YxxL/I” (single amino acid code, where x represents any amino acid) in the cytoplasmic tail, to form a cell activation complex (Kubagawa et al. 1999a; Maeda et al. 1998b; Ono et al. 1999; Taylor and McVicar 1999).
Fig. 1

Schematic presentation of paired immunoglobulin-like receptor (PIR)-A and PIR-B. Both PIR-A and PIR-B cDNAs encode type I transmembrane proteins consisting of similar extracellular regions with six Ig-like domains, but having distinctive trans-membrane and cytoplasmic regions. The ectodomain has five or six potential sites for N-linked glycosylation (bars with closed circles). The predicted PIR-A has a short cytoplasmic tail and a positively charged arginine (R) residue in the transmembrane segment, which is noncovalently associated with a negatively charged aspartic acid (D) in the transmembrane domain of the disulfi de-linked homodimer of the Fc receptor common γ chain (FcRγc) carrying immunoreceptor tyrosine-based activation motifs (ITAMs). In contrast, the PIR-B protein has a typical uncharged transmembrane region and a long cytoplasmic tail with immunoreceptor tyrosine-based inhibitory motifs (ITIMs).

Keywords

Major Histocompatibility Complex Class Adult Bone Marrow Lymphoid Progenitor Leukocyte Receptor Complex Surface Plasmon Resonance Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen RL, Raine T, Haude A, Trowsdale J, Wilson MJ (2001) Leukocyte receptor complexencoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J Immunol 167:5543–5547PubMedGoogle Scholar
  2. Arm JP, Nwankwo C, Austen KF (1997) Molecular identification of a novel family of human Ig superfamily members that possess immunoreceptor tyrosine-based inhibition motifs and homology to the mouse gp49B1 inhibitory receptor. J Immunol 159:2342–2349PubMedGoogle Scholar
  3. Barten R, Torkar M, Haude A, Trowsdale J, Wilson MJ (2001) Divergent and convergent evolution of NK-cell receptors. Trends Immunol 22:52–57PubMedCrossRefGoogle Scholar
  4. Bird LA, Peh CA, Kollnberger S, Sun MY, Elliott T, McMichael A, Bowness P (2003) The spondyloarthrropathy-associated class I allele HLA-B27 forms homodimers both within the ER and at the cell surface. Eur J Immunol 33:748–759PubMedCrossRefGoogle Scholar
  5. Bléry M, Kubagawa H, Chen CC, Vély F, Cooper MD, Vivier E (1998) The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sci USA 95:2446–2451PubMedCrossRefGoogle Scholar
  6. Chan VW, Meng F, Soriano P, DeFranco AL, Lowell CA (1997) Characterization of the B lymphocyte populations in Lyn-deficient mice and the role of Lyn in signal initiation and down-regulation. Immunity 7:69–81PubMedCrossRefGoogle Scholar
  7. Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, Lederman S, Colonna M, Cortesini R, Dalla-Favera R, Suciu-Foca N (2002) Tolerization of dendritic cells by Ts cells: the critical role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3:237–243PubMedCrossRefGoogle Scholar
  8. Chapman TL, Heikema AP, Bjorkman PJ (1999) The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11:603–613PubMedCrossRefGoogle Scholar
  9. Chen CC, Kang DW, Cooper MD, Kubagawa H (2002) Mast cell regulation via the paired immunoglobulin-like receptor PIR-B. Immunol Res 26:191–197PubMedCrossRefGoogle Scholar
  10. Colonna M, Nakajima H, Navarro F, Lopez-Botet M (1999) A novel family of Ig-like receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells. J Leukoc Biol 66:375–381PubMedGoogle Scholar
  11. Cosman D, Fanger N, Borges L, Kubin M, Chin W, Peterson L, Hsu ML (1997) A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7:273–282PubMedCrossRefGoogle Scholar
  12. Cosman D, Fanger N, Borges L (1999) Human cytomegalovirus, MHC class I and inhibitory signaling receptors: more questions than answers. Immunol Rev 168:177–185PubMedCrossRefGoogle Scholar
  13. Feldweg AM, Friend DS, Zhou JS, Kanaoka Y, Daheshia M, Li L, Austen F, Katz HR (2003) gp49B1 suppresses stem cell factor-induced mast cell activation-secretion and attendant inflammation in vivo. Eur J Immunol 33:2262–2268PubMedCrossRefGoogle Scholar
  14. Hayami K, Fukuta D, Nishikawa Y, Yamashita Y, Inui M, Ohyama Y, Hikida M, Ohmori H, Takai T (1997) Molecular cloning of a novel murine cell-surface glycoprotein homologous to killer cell inhibitory receptors. J Biol Chem 272:7320–7327PubMedCrossRefGoogle Scholar
  15. Ho LH, Uehara T, Chen CC, Kubagawa H, Cooper MD (1999) Constitutive tyrosine phosphorylation of the inhibitory paired immunoglobulin-like receptor PIR-B. Proc Natl Acad Sci USA. 96:15086–15090PubMedCrossRefGoogle Scholar
  16. Katsura Y (2002) Redefinition of lymphoid progenitors. Nat Rev Immunol 12:127–132CrossRefGoogle Scholar
  17. Katsuta H, Tsuji S, Niho Y, Kurosaki T, Kitamura D (1998) Lyn-mediated down-regulation of B-cell antigen receptor signaling: inhibition of protein kinase C activation by Lyn in a kinase-independent fashion. J Immunol 160:1547–1551PubMedGoogle Scholar
  18. Kawamoto H, Ohmura K, Katsura Y (1997) Direct evidence for the commitment of hematopoietic stem cells to T, B, and myeloid lineages in murine fetal liver. Int Immunol 9:1011–1019PubMedCrossRefGoogle Scholar
  19. Kawamoto H, Ikawa T, Ohmura K, Fujimoto S, Katsura Y (2000) T-cell progenitors emerge earlier than B-cell progenitor in the murine fetal liver. Immunity 12:441–450PubMedCrossRefGoogle Scholar
  20. Kollnberger S, Bird LA, Roddis M, Hacquard-Bouder C, Kubagawa H, Bodmer HC, Breban M, McMichael AJ, Bowness P (2004) HLA-B27 heavy chain homodimers are expressed in HLAB27 transgenic rodent models of spondyloarthritis and are ligands for paired Ig-like receptors. J Immunol 173:1699–1710PubMedGoogle Scholar
  21. Kubagawa H, Burrows PD, Cooper MD (1997) A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci USA 94:5261–5266PubMedCrossRefGoogle Scholar
  22. Kubagawa H, Chen CC, Ho LH, Shimada T, Gartland L, Mashburn C, Uehara T, Ravetch JV, Cooper MD (1999a) Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. J Exp Med 189:309–317PubMedCrossRefGoogle Scholar
  23. Kubagawa H, Cooper MD, Chen CC, Ho LH, Alley TL, Hurez V, Tun T, Uehara T, Shimada T, Burrows PD (1999b) Paired immunoglobulin-like receptors of activating and inhibitory types. Curr Top Microbiol Immunol 244:137–149PubMedGoogle Scholar
  24. Lanier LL (2001) Face off—the interplay between activating and inhibitory immune receptors. Curr Opin Immunol 13:326–331PubMedCrossRefGoogle Scholar
  25. Liang S, Baibakov B, Horuzsko A (2002) HLA-G inhibits the function of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol 32:2418–2426PubMedCrossRefGoogle Scholar
  26. Liu J, Liu Z, Witkowski P, Vlad G, Manavalan JS, Scotto L, Kim-Schulze S, Cortesini S, Hardy MA, Suciu-Foca N (2004) Rat CD8+ FOXP3+ T suppressor cells mediate tolerance to allogeneic heart transplants, including PIR-B in APC and rendering the graft invulnerable to rejection. Transplant Immunol 13:239–247CrossRefGoogle Scholar
  27. Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904PubMedCrossRefGoogle Scholar
  28. Maeda A, Kurosaki M, Ono M, Takai T, Kurosaki T (1998a) Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunogloblin-like receptor B (PIR-B)-mediated inhibitory signal. J Exp Med 187:1355–1360PubMedCrossRefGoogle Scholar
  29. Maeda A, Kurosaki M, Kurosaki T (1998b) Paired immunoglobulin-like receptor (PIR)-A is involved in activating mast cells through its association with Fc receptor γ chain. J Exp Med 188:991–995PubMedCrossRefGoogle Scholar
  30. Malbec O, Fridman WH, Daëron M (1999) Negative regulation of c-kit-mediated cell proliferation by FcγRIIB. J Immunol 162:4424–4429PubMedGoogle Scholar
  31. Martin AM, Kulski JK, Witt C, Pontarotti P, Christiansen FT (2002) Leukocyte Ig-like receptor complex (LRC) in mice and men. Trends Immunol 23:81–88PubMedCrossRefGoogle Scholar
  32. Masuda K, Kubagawa H, Ikawa T, Chen CC, Kakugawa K, Hattori M, Kageyama R, Cooper MD, Minato N, Katsura Y, Kawamoto H (2005) Prethymic T-cell development defined by the expression of paired immunoglobulin-like receptors. EMBO J 24:4052–4060PubMedCrossRefGoogle Scholar
  33. Nakamura A, Kobayashi E, Takai T (2004) Exacerbated graft-versus-host disease in Pirb-/- mice. Nat Immunol 5:623–629PubMedCrossRefGoogle Scholar
  34. Ono M, Yuasa T, Ra C, Takai T (1999) Stimulatory function of paired immunoglobulin-like receptor-A in mast cell line by associating with subunits common to Fc receptors. J Biol Chem 274:30288–30296PubMedCrossRefGoogle Scholar
  35. Pereira S, Lowell C (2003) The Lyn tyrosine kinase negatively regulates neutrophil integrin signaling. J Immunol 171:1319–1327PubMedGoogle Scholar
  36. Pereira S, Zhang H, Takai T, Lowell CA (2004) The inhibitory receptor PIR-B negative regulates neutrophil and macrophage integrin signaling. J Immunol 173:5757–5765PubMedGoogle Scholar
  37. Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89PubMedCrossRefGoogle Scholar
  38. Rudge EU, Cutler AJ, Pritchard NR, Smith KGC (2001) Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and FcγRII-mediated B-cell suppression. J Exp Med 195:1079–1085CrossRefGoogle Scholar
  39. Shiroishi M, Tsumoto K, Amano K, Shirakihara Y, Colonna M, Braud VM, Allan DSJ, Makadzange A, Rowland-Jones S, Willcox B, Jones EY, van der Merwe PA, Kumagai I, Maenaka K (2003) Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci USA 100:8856–8861PubMedCrossRefGoogle Scholar
  40. Sidorenko SP, Clark EA (2003) The dual-function CD150 receptor subfamily: the viral attraction. Nat Immunol 4:19–24PubMedCrossRefGoogle Scholar
  41. Takai T, Ono M (2001) Activating and inhibitory nature of the murine paired immunoglobulin-like receptor family. Immunol Rev 181:215–222PubMedCrossRefGoogle Scholar
  42. Takai T (2005a) Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology 115:433–440PubMedCrossRefGoogle Scholar
  43. Takai T (2005b) A novel recognition system for MHC class I molecules contributed by PIR. Adv Immunol 88:161–192PubMedCrossRefGoogle Scholar
  44. Taylor LS, McVicar DW (1999) Functional association of FcɛRIγ with arginine632 of paired immunoglobulin-like receptor (PIR)-A3 in murine macrophages. Blood 94:1790–1796PubMedGoogle Scholar
  45. Tun T, Kubagawa Y, Dennis G, Burrows PD, Cooper MD, Kubagawa H (2003) Genomic structure of mouse PIR-A6, an activating member of the paired immunoglobulin-like receptor gene family. Tissue Antigen 61:220–230CrossRefGoogle Scholar
  46. Uehara T, Bléry M, Kang DW, Chen CC, Ho LH, Gartland GL, Liu FT, Vivier E, Cooper MD, Kubagawa H (2001) Inhibition of IgE-mediated mast cell activation by the paired Ig-like receptor PIR-B. J Clin Invest 108:1041–1050PubMedGoogle Scholar
  47. Ujike A, Takeda K, Nakamura A, Ebihara S, Akiyama K, Takai T (2002) Impaired dendritic cell maturation and increased TH2 responses in PIR-B-/- mice. Nat Immunol 3:542–548PubMedCrossRefGoogle Scholar
  48. Wagtmann N, Rojo S, Eichler E, Mohrenweiser H, Long EO (1997) A new human gene complex encoding the killer cell inhibitory receptors and related monocyte/macrophage receptors. Curr Biol 7:615–618PubMedCrossRefGoogle Scholar
  49. Yamashita Y, Fukuta D, Tsuji A, Nagabukuro A, Matsuda Y, Nishikawa Y, Ohyama Y, Ohmori H, Ono M, Takai T (1998a) Genomic structure and chromosomal location of p91, a novel murine regulatory receptor family. J Biochem (Tokyo) 123:358–368PubMedGoogle Scholar
  50. Yamashita Y, Ono M, Takai T (1998b) Inhibitory and stimulatory function of paired Ig-like receptor (PIR) family in RBL-2H3 cells. J Immunol 161:4042–4047PubMedGoogle Scholar
  51. Wang J, Koizumi T, Watanabe T (1996) Altered antigen receptor signaling and impaired Fasmediated apoptosis of B cells in Lyn-deficient mice. J Exp Med 184:831–838PubMedCrossRefGoogle Scholar
  52. Wheadon H, Paling NRD, Welham MJ (2002) Molecular interactions of SHP1 and SHP2 in IL-3-signaling. Cell Signal 14:219–229PubMedCrossRefGoogle Scholar
  53. Willcox BE, Thomas LM, Bjorkman PJ (2003) Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat Immunol 4:913–919PubMedCrossRefGoogle Scholar
  54. Zhang H, Meng F, Chu CC, Takai T, Lowell CA (2005) The Src family kinases Hck and Fgr negatively regulate neutrophil and dendritic cell chemokine signaling via PIR-B. Immunity 22:235–246PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Hiromi Kubagawa
    • 1
  • Ching-Cheng Chen
    • 1
  • Ikuko Torii
    • 1
  • Max D. Cooper
    • 2
  • Kyoko Masuda
    • 3
  • Yoshimoto Katsura
    • 4
  • Hiroshi Kawamoto
    • 3
  1. 1.Division of Developmental and Clinical ImmunologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Howard Hughes Medical InstituteBirminghamUSA
  3. 3.Laboratory for Lymphocyte DevelopmentRIKEN Research Center for Allergy and ImmunologyYokohamaJapan
  4. 4.Division of Cell Regeneration and Transplantation, Advanced Medical Research CenterNihon University School of MedicineTokyoJapan

Personalised recommendations