Advertisement

Strategies of Natural Killer (NK) Cell Recognition and Their Roles in Tumor Immunosurveillance

  • C. Andrew Stewart
  • Eric Vivier

Abstract

Natural Killer cells (NK cells) represent an interesting epistemological example in Immunology. First considered as “background noise” in T-cell cytolytic assays, Natural Killer (NK) cells were characterized more than 30 years ago as cytotoxic effectors of the innate immune system (Kiessling et al. 1975). Later, NK cells were recognized as a peculiar type of large granular lymphocytes that are widespread throughout the body (Lanier et al. 1986), being present in both lymphoid organs and non-lymphoid peripheral tissues (Cooper et al. 2004; Ferlazzo and Munz 2004). Their specificity for a variety of tumor cells, virus-infected cells or allogeneic cells along with their lack of antigen-specific receptors, have puzzled immunologists for many years. Since this time, a series of discoveries have shed light on the mechanisms of NK cell effector function and have simultaneously broadened our views on immune detection strategies (Carayannopoulos and Yokoyama 2004; Lanier 2005; Moretta et al. 2002; Stewart et al. 2006; Vivier and Biron 2002). Such discoveries include “missing-self recognition” (via major histocompatibility complex [MHC] class I) (Kärre et al. 1986), the identification of inhibitory cell surface receptors that modulate NK cell activation (via Immunoreceptor Tyrosine-based Inhibition Motifs: ITIM) (Vély and Vivier 1997) or the “stress-induced self recognition” (via NKG2D) (Raulet 2003) (Fig. 1). The involvement of NK cells in the control of viral and parasitic infections, in auto-immunity, in reproduction as well as in the clinical outcome of hematopoietic transplants has been reviewed recently (Carayannopoulos and Yokoyama 2004; Johansson et al. 2005; Korbel et al. 2004; Lodoen and Lanier 2005; Orange and Ballas 2006; Parham 2005; Ruggeri et al. 2005; Zhang et al. 2005).
Fig. 1

Natural killer cell recognition strategies. Schematic representation of the mode of NK cell interaction with partner cells (see text for details)

Keywords

Natural Killer Natural Killer Cell Human Natural Killer Cell NKG2D Ligand Natural Killer Cell Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abi-Rached L, Parham P (2005) Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J Exp Med 201:1319–1332PubMedGoogle Scholar
  2. Anderson SK (2006) Transcriptional regulation of NK cell receptors. Curr Top Microbiol Immunol 298:59–75PubMedGoogle Scholar
  3. Andre P, Castriconi R, Espeli M, Anfossi N, Juarez T, Hue S, Conway H, Romagne F, Dondero A, Nanni M, et al (2004) Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. Eur J Immunol 34:961–971PubMedGoogle Scholar
  4. Andrew DP, Rott LS, Kilshaw PJ, Butcher EC (1996) Distribution of alpha 4 beta 7 and alpha E beta 7 integrins on thymocytes, intestinal epithelial lymphocytes and peripheral lymphocytes. Eur J Immunol 26:897–905PubMedGoogle Scholar
  5. Anfossi N, André P, Guia S, Falk C, Stewart CA, Breso V, Roetynck S, Frassati C, Reviron D, Middleton D, et al (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342PubMedGoogle Scholar
  6. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326PubMedGoogle Scholar
  7. Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31:2680–2689PubMedGoogle Scholar
  8. Arnon TI, Achdout H, Lieberman N, Gazit R, Gonen-Gross T, Katz G, Bar-Ilan A, Bloushtain N, Lev M, Joseph A, et al (2004) The mechanisms controlling the recognition of tumor-and virus-infected cells by NKp46. Blood 103:664–672PubMedGoogle Scholar
  9. Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G, Gazit R, Gonen-Gross T, Hanna J, Nahari E, et al (2005) Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol 6:515–523PubMedGoogle Scholar
  10. Assarsson E, Kambayashi T, Schatzle JD, Cramer SO, von Bonin A, Jensen PE, Ljunggren HG, Chambers BJ (2004) NK cells stimulate proliferation of T and NK cells through 2B4/CD48 interactions. J Immunol 173:174–180PubMedGoogle Scholar
  11. Bacon L, Eagle RA, Meyer M, Easom N, Young NT, Trowsdale J (2004) Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol 173:1078–1084PubMedGoogle Scholar
  12. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217PubMedGoogle Scholar
  13. Barao I, Hanash AM, Hallett W, Welniak LA, Sun K, Redelman D, Blazar BR, Levy RB, Murphy WJ (2006) Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+CD25+ regulatory T cells. Proc Natl Acad Sci USA 103:5460–5465PubMedGoogle Scholar
  14. Barber DF, Long EO (2003) Coexpression of CD58 or CD48 with intercellular adhesion molecule 1 on target cells enhances adhesion of resting NK cells. J Immunol 170:294–299PubMedGoogle Scholar
  15. Barber DF, Faure M, Long EO (2004) LFA-1 contributes an early signal for NK cell cytotoxicity. J Immunol 173:3653–3659PubMedGoogle Scholar
  16. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729PubMedGoogle Scholar
  17. Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signaling. Nature 430:257–263PubMedGoogle Scholar
  18. Biassoni R, Pessino A, Malaspina A, Cantoni C, Bottino C, Sivori S, Moretta L, Moretta A (1997) Role of amino acid position 70 in the binding affinity of p50.1 and p58.1 receptors for HLA-Cw4 molecules. Eur J Immunol 27:3095–3099PubMedGoogle Scholar
  19. Blaser C, Kaufmann M, Pircher H (1998) Virus-activated CD8 T cells and lymphokine-activated NK cells express the mast cell function-associated antigen, an inhibitory C-type lectin. J Immunol 161:6451–6454PubMedGoogle Scholar
  20. Bloushtain N, Qimron U, Bar-Ilan A, Hershkovitz O, Gazit R, Fima E, Korc M, Vlodavsky I, Bovin NV, Porgador A (2004) Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J Immunol 173:2392–2401PubMedGoogle Scholar
  21. Boles KS, Barchet W, Diacovo T, Cella M, Colonna M (2005) The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood 106:779–786PubMedGoogle Scholar
  22. Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG (1998) Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med 187:813–818PubMedGoogle Scholar
  23. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, et al (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567PubMedGoogle Scholar
  24. Bottino C, Castriconi R, Moretta L, Moretta A (2005) Cellular ligands of activating NK receptors. Trends Immunol 26:221–226PubMedGoogle Scholar
  25. Boyington JC, Sun PD (2002) A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Mol Immunol 38:1007–1021PubMedGoogle Scholar
  26. Braud V, Jones EY, McMichael M (1997) The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur J Immunol 27:1164–1169PubMedGoogle Scholar
  27. Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A B and C. Nature 391:795–79PubMedGoogle Scholar
  28. Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL, Blattenberger EA, Dubbelde CE, Stone LR, Scalzo AA, Yokoyama WM (2001) Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292:934–937PubMedGoogle Scholar
  29. Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO (2005a) Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 202:1001–1012PubMedGoogle Scholar
  30. Bryceson YT, March ME, Ljunggren HG, Long EO (2005b) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107: 159–66PubMedGoogle Scholar
  31. Burshtyn DN, Scharenberg AM, Wagtmann N, Rajagopalan S, Berrada K, Yi T, Kinet J-P, Long EO (1996) Recruitment of tyrosine phosphatase HCP by the killer cell inhibitory receptor. Immunity 4:77–85PubMedGoogle Scholar
  32. Carayannopoulos LN, Yokoyama WM (2004) Recognition of infected cells by natural killer cells. Curr Opin Immunol 16:26–33PubMedGoogle Scholar
  33. Carr WH, Pando MJ, Parham P (2005) KIR3DL1 polymorphisms that affect NK cell inhibition by HLA-Bw4 ligand. J Immunol 175:5222–5229PubMedGoogle Scholar
  34. Carrington M, Martin MP (2006) The impact of variation at the KIR gene cluster on human disease. Curr Top Microbiol Immunol 298:225–257PubMedGoogle Scholar
  35. Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100:4120–4125PubMedGoogle Scholar
  36. Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, Bottino C, Moretta A (2004) Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res 64:9180–9184PubMedGoogle Scholar
  37. Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132PubMedGoogle Scholar
  38. Cerwenka A, Bakker ABH, McClanahan T, Wagner J, Wu J, Phillips JH, Lanier LL (2000) Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12:721–727PubMedGoogle Scholar
  39. Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98:11521–11526PubMedGoogle Scholar
  40. Chan CW, Crafton E, Fan HN, Flook J, Yoshimura K, Skarica M, Brockstedt D, Dubensky TW, Stins MF, Lanier LL, et al (2006) Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med 12:207–213PubMedGoogle Scholar
  41. Chang C, Dietrich J, Harpur AG, Lindquist JA, Haude A, Loke YW, King A, Colonna M, Trowsdale J, Wilson MJ (1999) Cutting edge: KAP10, a novel transmembrane adapter protein genetically linked to DAP12 but with unique signaling properties. J Immunol 163:4651–4654PubMedGoogle Scholar
  42. Chapman TL, Heikeman AP, Bjorkman PJ (1999) The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11:603–613PubMedGoogle Scholar
  43. Chiesa S, Mingueneau M, Fuseri N, Malissen B, Raulet DH, Malissen M, Vivier E, Tomasello E (2006) Multiplicity and plasticity of natural killer cell signaling pathways. Blood 107: 2364–2372PubMedGoogle Scholar
  44. Colonna M, Navarro F, Bellon T, Liano M, Garcia P, Samaridis J, Angman L, Cella M, Lopez-Botet M (1997) A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 186:1809–1818PubMedGoogle Scholar
  45. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640PubMedGoogle Scholar
  46. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA (2004) NK cell and DC interactions. Trends Immunol 25:47–52PubMedGoogle Scholar
  47. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133PubMedGoogle Scholar
  48. Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, Vivier E, Held W (2005) Altered NKG2D function in NK cells induced by chronic exposure to NKG2D-ligand expressing tumor cells. Blood 106:1711–1717PubMedGoogle Scholar
  49. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168:1356–1361PubMedGoogle Scholar
  50. Crocker PR (2005) Siglecs in innate immunity. Curr Opin Pharmacol 5:431–437PubMedGoogle Scholar
  51. Daeron M, Vivier E (1999) Biology of immunoreceptor tyrosine-based inhibition motif-bearing molecules. Curr Top Microbiol Immunol 244:1–12PubMedGoogle Scholar
  52. Dall’Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P, Bardos P, Watier H, Thibault G (2004) Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 64:4664–4669PubMedGoogle Scholar
  53. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF (2001) MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15:83–93PubMedGoogle Scholar
  54. de Haas M, Koene HR, Kleijer M, de Vries E, Simsek S, van Tol MJ, Roos D, von dem Borne AE (1996) A triallelic Fc gamma receptor type IIIA polymorphism influences the binding of human IgG by NK cell Fc gamma RIIIa. J Immunol 156:3948–3955PubMedGoogle Scholar
  55. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37PubMedGoogle Scholar
  56. de Vries E, Koene HR, Vossen JM, Gratama JW, von dem Borne AE, Waaijer JL, Haraldsson A, de Haas M, van Tol MJ (1996) Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood 88:3022–3027PubMedGoogle Scholar
  57. Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5:112–124PubMedGoogle Scholar
  58. Desrosiers MP, Kielczewska A, Loredo-Osti JC, Adam SG, Makrigiannis AP, Lemieux S, Pham T, Lodoen MB, Morgan K, Lanier LL, Vidal SM (2005) Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nat Genet 37:593–599PubMedGoogle Scholar
  59. Di Santo JP (2006) Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 24:257–286PubMedGoogle Scholar
  60. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH (2000) Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1:119–126PubMedGoogle Scholar
  61. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171PubMedGoogle Scholar
  62. Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E, Raulet DH (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3:1142–1149PubMedGoogle Scholar
  63. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998PubMedGoogle Scholar
  64. Dunn GP, Old LJ, Schreiber RD (2004a) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360PubMedGoogle Scholar
  65. Dunn GP, Old LJ, Schreiber RD (2004b) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148PubMedGoogle Scholar
  66. Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, Bui JD, Diamond MS, Koebel CM, Arthur C, White JM, Schreiber RD (2005) A critical function for type I interferons in cancer immunoediting. Nat Immunol 6:722–729PubMedGoogle Scholar
  67. Ebert LM, Meuter S, Moser B (2006) Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J Immunol 176:4331–4336PubMedGoogle Scholar
  68. Falco M, Biassoni R, Bottino C, Vitale M, Sivori S, Augugliaro R, Moretta L, Moretta A (1999) Identification and molecular cloning of p75/AIRM1 a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J Exp Med 190:793–802PubMedGoogle Scholar
  69. Farrar MA, Schreiber RD (1993) The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol 11:571–611PubMedGoogle Scholar
  70. Ferlazzo G, Munz C (2004) NK cell compartments and their activation by dendritic cells. J Immunol 172:1333–1339PubMedGoogle Scholar
  71. Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A, Munz C (2004) The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 172:1455–1462PubMedGoogle Scholar
  72. Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH (2005) A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105:4416–4423PubMedGoogle Scholar
  73. Franksson L, Sundback J, Achour A, Bernlind J, Glas R, Kärre K (1999) Peptide dependency and selectivity of the NK cell inhibitory receptor Ly-49C. Eur J Immunol 29:2748–2758PubMedGoogle Scholar
  74. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172:3994–3998PubMedGoogle Scholar
  75. Fuchs A, Cella M, Kondo T, Colonna M (2005) Paradoxic inhibition of human natural interferonproducing cells by the activating receptor NKp44. Blood 106:2076–2082PubMedGoogle Scholar
  76. Furukawa H, Yabe T, Watanabe K, Miyamoto R, Miki A, Akaza T, Tadokoro K, Tohma S, Inoue T, Yamamoto K, Juji T (1999) Tolerance of NK and LAK activity for HLA class I-deficient targets in a TAP1-deficient patient (bare lymphocyte syndrome type I). Hum Immunol 60:32–40PubMedGoogle Scholar
  77. Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13:114–119PubMedGoogle Scholar
  78. Gardiner CM, Guethlein LA, Shilling HG, Pando M, Carr WH, Rajalingam R, Vilches C, Parham P (2001) Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism. J Immunol 166:2992–3001PubMedGoogle Scholar
  79. Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190PubMedGoogle Scholar
  80. Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E, et al (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523PubMedGoogle Scholar
  81. George TC, Mason LH, Ortaldo JR, Kumar V, Bennett M (1999) Positive recognition of MHC class I molecules by the Ly49D receptor of murine NK cells. J Immunol 162:2035–2043PubMedGoogle Scholar
  82. Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, et al (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085PubMedGoogle Scholar
  83. Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M (2002) NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 3:1150–1155PubMedGoogle Scholar
  84. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294:605–609PubMedGoogle Scholar
  85. Gonzalez S, Groh V, Spies T (2006) Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol 298:121–138PubMedGoogle Scholar
  86. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gammadelta T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884PubMedGoogle Scholar
  87. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T (2001) Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255–260PubMedGoogle Scholar
  88. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738PubMedGoogle Scholar
  89. Grundemann C, Bauer M, Schweier O, von Oppen N, Lassing U, Saudan P, Becker KF, Karp K, Hanke T, Bachmann MF, Pircher H (2006) Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J Immunol 176:1311–1315PubMedGoogle Scholar
  90. Guthmann MD, Tal M, Pecht I (1995) A secretion inhibitory signal transduction molecule on mast cells is another C-type lectin. Proc Natl Acad Sci USA 92:9397–9401PubMedGoogle Scholar
  91. Hahn WC, Weinberg RA (2002) Modelling the molecular circuitry of cancer. Nat Rev Cancer 2:331–341PubMedGoogle Scholar
  92. Haliotis T, Ball JK, Dexter D, Roder JC (1985) Spontaneous and induced primary oncogenesis in natural killer (NK)-cell-deficient beige mutant mice. Int J Cancer 35:505–513PubMedGoogle Scholar
  93. Hamerman JA, Lanier LL (2006) Inhibition of immune responses by ITAM-bearing receptors. Sci STKE 2006:re1Google Scholar
  94. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedGoogle Scholar
  95. Hanke T, Corral L, Vance RE, Raulet DH (1998) 2F1 antigen, the mouse homolog of the rat “mast cell function-associated antigen”, is a lectin-like type II transmembrane receptor expressed by natural killer cells. Eur J Immunol 28:4409–4417PubMedGoogle Scholar
  96. Hanke T, Takizawa H, McMahon CW, Busch DH, Pamer EG, Miller JD, Altman JD, Liu Y, Cado D, Lemonnier FA, et al (1999) Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity 11:67–77PubMedGoogle Scholar
  97. Hansasuta P, Dong T, Thananchai H, Weekes M, Willberg C, Aldemir H, Rowland-Jones S, Braud VM (2004) Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur J Immunol 34:1673–1679PubMedGoogle Scholar
  98. Hayakawa Y, Takeda K, Yagita H, Kakuta S, Iwakura Y, Van Kaer L, Saiki I, Okumura K (2001) Critical contribution of IFN-gamma and NK cells but not perforin-mediated cytotoxicity, to anti-metastatic effect of alpha-galactosylceramide. Eur J Immunol 31:1720–1727PubMedGoogle Scholar
  99. Hazenbos WL, Gessner JE, Hofhuis FM, Kuipers H, Meyer D, Heijnen IA, Schmidt RE, Sandor M, Capel PJ, Daeron M, et al (1996) Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity 5:181–188PubMedGoogle Scholar
  100. Helander TS, Timonen T (1998) Adhesion in NK cell function. Curr Top Microbiol Immunol 230:89–99PubMedGoogle Scholar
  101. Herberman RB, Nunn ME, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors I. Distribution of reactivity and specificity. Int J Cancer 16:216–229PubMedGoogle Scholar
  102. Hollyoake M, Campbell RD, Aguado B (2005) NKp30 (NCR3) is a pseudogene in 12 inbred and wild mouse strains, but an expressed gene in Mus caroli. Mol Biol Evol 22:1661–1672PubMedGoogle Scholar
  103. Holmes MA, Li P, Petersdorf EW, Strong RK (2002) Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D. J Immunol 16:1395–1400Google Scholar
  104. Hsu KC, Chida S, Geraghty DE, Dupont B (2002) The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism. Immunol Rev 190:40–52PubMedGoogle Scholar
  105. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356:1795–1799PubMedGoogle Scholar
  106. Ishiyama K, Ohdan H, Ohira M, Mitsuta H, Arihiro K, Asahara T (2006) Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 43:362–372PubMedGoogle Scholar
  107. Ito A, Handa K, Withers DA, Satoh M, Hakomori S (2001a) Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: possible role of disialogangliosides in tumor progression. FEBS Lett 504:82–86PubMedGoogle Scholar
  108. Ito A, Handa K, Withers DA, Satoh M, Hakomori S (2001b) Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: possible role of disialogangliosides in tumor progression. FEBS Lett 498:116–120PubMedGoogle Scholar
  109. Ito M, Maruyama T, Saito N, Koganei S, Yamamoto K, Matsumoto N (2006) Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med 203:289–295PubMedGoogle Scholar
  110. Jabri B, De Serre NP, Cellier C, Evans K, Gache C, Carvalho C, Mougenot JF, Allez M, Jian R, Desreumaux P, et al (2000) Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 118:867–879PubMedGoogle Scholar
  111. Jakobisiak M, Lasek W, Golab J (2003) Natural mechanisms protecting against cancer. Immunol Lett 90:103–122PubMedGoogle Scholar
  112. Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH (2002) The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17:19–29PubMedGoogle Scholar
  113. Janeway CA, Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedGoogle Scholar
  114. Jawahar S, Moody C, Chan M, Finberg R, Geha R, Chatila T (1996) Natural Killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II). Clin Exp Immunol 103:408–413PubMedGoogle Scholar
  115. Johansson MH, Bieberich C, Jay G, Kärre K, Hoglund P (1997) Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene. J Exp Med 186:353–364PubMedGoogle Scholar
  116. Johansson S, Berg L, Hall H, Hoglund P (2005) NK cells: elusive players in autoimmunity. Trends Immunol 26:613–618PubMedGoogle Scholar
  117. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561PubMedGoogle Scholar
  118. Kärre K (1997) How to recognize a foreign submarine. Immunol Rev 155:5–9PubMedGoogle Scholar
  119. Kärre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678PubMedGoogle Scholar
  120. Katz G, Gazit R, Arnon TI, Gonen-Gross T, Tarcic G, Markel G, Gruda R, Achdout H, Drize O, Merims S, Mandelboim O (2004) MHC class I-independent recognition of NK-activating receptor KIR2DS4. J Immunol 173:1819–1825PubMedGoogle Scholar
  121. Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H (1999) Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 163:1906–1913PubMedGoogle Scholar
  122. Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H, Smyth MJ (2002a) Induction of tumor-specific T-cell memory by NK cell-mediated tumor rejection. Nat Immunol 3:83–90PubMedGoogle Scholar
  123. Kelly JM, Takeda K, Darcy PK, Yagita H, Smyth MJ (2002b) A role for IFN-gamma in primary and secondary immunity generated by NK cell-sensitive tumor-expressing CD80 in vivo. J Immunol 168:4472–4479PubMedGoogle Scholar
  124. Kiessling R, Klein E, Wigzell H (1975a) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117PubMedGoogle Scholar
  125. Kilshaw PJ, Higgins JM (2002) Alpha E: no more rejection? J Exp Med 196:873–875PubMedGoogle Scholar
  126. Kim DD, Song WC (2006) Membrane complement regulatory proteins. Clin Immunol 118:127–136PubMedGoogle Scholar
  127. Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM (2000) In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci USA 97: 2731–2736PubMedGoogle Scholar
  128. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S, Hansen TH, Yokoyama WM (2005b) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436:709–713PubMedGoogle Scholar
  129. Kim S, Song YJ, Higuchi DA, Kang HP, Pratt JR, Yang L, Hong CM, Poursine-Laurent J, Iizuka K, French AR, et al (2005a) Arrested natural killer cell development associated with transgene insertion into the Atf2 locus. Blood 107:1024–1030PubMedGoogle Scholar
  130. King A, Loke YW, Chaouat G (1997) NK cells and reproduction. Immunol Today 18:64–66PubMedGoogle Scholar
  131. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M (1997) Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 90:1109–1114PubMedGoogle Scholar
  132. Kojima H, Kanada H, Shimizu S, Kasama E, Shibuya K, Nakauchi H, Nagasawa T, Shibuya A (2003) CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J Biol Chem 278:36748–36753PubMedGoogle Scholar
  133. Korbel DS, Finney OC, Riley EM (2004) Natural killer cells and innate immunity to protozoan pathogens. Int J Parasitol 34:1517–1528PubMedGoogle Scholar
  134. Kraft JR, Vance RE, Pohl J, Martin AM, Raulet DH, Jensen PE (2000) Analysis of Qa-1(b) peptide binding specificity and the capacity of CD94/NKG2A to discriminate between Qa-1-peptide complexes. J Exp Med 192:613–624PubMedGoogle Scholar
  135. Kriegeskorte AK, Gebhardt FE, Porcellini S, Schiemann M, Stemberger C, Franz TJ, Huster KM, Carayannopoulos LN, Yokoyama WM, Colonna M, et al (2005) NKG2D-independent suppression of T-cell proliferation by H60 and MICA. Proc Natl Acad Sci USA 102:11805–11810PubMedGoogle Scholar
  136. Kumar V, McNerney ME (2005) A new self: MHC-class-I-independent natural-killer-cell selftolerance. Nat Rev Immunol 5:363–374PubMedGoogle Scholar
  137. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274PubMedGoogle Scholar
  138. Lanier LL, Phillips JH, Hackett J Jr, Tutt M, Kumar V (1986) Natural killer cells: Definition of a cell type rather than a function. J Immunol 137:2735–2739PubMedGoogle Scholar
  139. Lanier LL, Corliss B, Phillips JH (1997) Arousal and inhibition of human NK cells. Immunol Rev 155:145–154PubMedGoogle Scholar
  140. Laouar Y, Sutterwala FS, Gorelik L, Flavell RA (2005) Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 6:600–607PubMedGoogle Scholar
  141. Lee U, Santa K, Habu S, Nishimura T (1996) Murine asialo GM1+CD8+ T cells as novel interleukin-12-responsive killer T-cell precursors. Jpn J Cancer Res 87:429–432PubMedGoogle Scholar
  142. Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, Geraghty DE (1998) HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 95:5199–5204PubMedGoogle Scholar
  143. Lee SH, Girard S, Macina D, Busa M, Zafer A, Belouchi A, Gros P, Vidal SM (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28:42–45PubMedGoogle Scholar
  144. Lee KM, Bhawan S, Majima T, Wei H, Nishimura MI, Yagita H, Kumar V (2003a) Cutting edge: the NK cell receptor 2B4 augments antigen-specific T-cell cytotoxicity through CD48 ligation on neighboring T cells. J Immunol 170:4881–4885PubMedGoogle Scholar
  145. Lee SH, Zafer A, de Repentigny Y, Kothary R, Tremblay ML, Gros P, Duplay P, Webb JR, Vidal SM (2003b) Transgenic expression of the activating natural killer receptor Ly49H confers resistance to cytomegalovirus in genetically susceptible mice. J Exp Med 197:515–526PubMedGoogle Scholar
  146. Lee JC, Lee KM, Kim DW, Heo DS (2004a) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335–7340PubMedGoogle Scholar
  147. Lee KM, McNerney ME, Stepp SE, Mathew PA, Schatzle JD, Bennett M, Kumar V (2004b) 2B4 acts as a non-major histocompatibility complex binding inhibitory receptor on mouse natural killer cells. J Exp Med 199:1245–1254PubMedGoogle Scholar
  148. Lee KM, Forman JP, McNerney ME, Stepp S, Kuppireddi S, Guzior D, Latchman YE, Sayegh MH, Yagita H, Park CK, et al (2006) Requirement of homotypic NK-cell interactions through 2B4(CD244)/CD48 in the generation of NK effector functions. Blood 107:3181–3188PubMedGoogle Scholar
  149. Lehmann J, Huehn J, de la Rosa M, Maszyna F, Kretschmer U, Krenn V, Brunner M, Scheffold A, Hamann A (2002) Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25− regulatory T cells. Proc Natl Acad Sci USA 99:13031–13036PubMedGoogle Scholar
  150. Li P, Willie ST, Bauer S, Morris DL, Spies T, Strong RK (1999) Crystal structure of the MHC class I homolog MIC-A, a gammadelta T-cell ligand. Immunity 10:577–584PubMedGoogle Scholar
  151. Li P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK (2001) Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat Immunol 2:443–451PubMedGoogle Scholar
  152. Li P, McDermott G, Strong RK (2002) Crystal structures of RAE-1beta and its complex with the activating immunoreceptor NKG2D. Immunity 16:77–86PubMedGoogle Scholar
  153. Liao NS, Bix M, Zijlstra M, Jaenisch R, Raulet D (1991) MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253:199–202PubMedGoogle Scholar
  154. Lodoen MB, Lanier LL (2005) Viral modulation of NK cell immunity. Nat Rev Microbiol 3:59–69PubMedGoogle Scholar
  155. Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904PubMedGoogle Scholar
  156. Lopez-Botet M, Carretero M, Bellon T, Perez-Villar JJ, Llano M, Navarro F (1998) The CD94/NKG2 C-type lectin receptor complex. Curr Top Microbiol Immunol 230:41–52PubMedGoogle Scholar
  157. MacFarlane AW IV, Campbell KS (2005) Signal transduction in Natural Killer cells. Curr Top Microbiol Immunol 298:23–57Google Scholar
  158. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060PubMedGoogle Scholar
  159. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, Trowsdale J, et al (2002a) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31:429–434PubMedGoogle Scholar
  160. Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J, Wilson MJ, Trowsdale J, Gladman D, Carrington M (2002b) Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 169: 2818–2822PubMedGoogle Scholar
  161. McNerney ME, Kumar V (2006) The CD2 family of natural killer cell receptors. Curr Top Microbiol Immunol 298:91–120PubMedGoogle Scholar
  162. Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, Raulet DH, Lanier LL, Groh V, Spies T, et al (2004) Coordinated induction by IL-15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21:357–366PubMedGoogle Scholar
  163. Messmer B, Eissmann P, Stark S, Watzl C (2006) CD48 Stimulation by 2B4 (CD244)-Expressing Targets Activates Human NK Cells. J Immunol 176:4646–4650PubMedGoogle Scholar
  164. Middleton D, Williams F, Halfpenny IA (2005) KIR genes. Transpl Immunol 14:135–142PubMedGoogle Scholar
  165. Momot T, Koch S, Hunzelmann N, Krieg T, Ulbricht K, Schmidt RE, Witte T (2004) Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum 50:1561–1565PubMedGoogle Scholar
  166. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223PubMedGoogle Scholar
  167. Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L (2002) What is a natural killer cell? Nat Immunol 3:6–8PubMedGoogle Scholar
  168. Moretta A, Marcenaro E, Sivori S, Della Chiesa M, Vitale M, Moretta L (2005) Early liaisons between cells of the innate immune system in inflamed peripheral tissues. Trends Immunol 26:668–675PubMedGoogle Scholar
  169. Natarajan K, Dimasi N, Wang J, Mariuzza RA, Margulies DH (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol 20:853–885PubMedGoogle Scholar
  170. Nelson GW, Martin MP, Gladman D, Wade J, Trowsdale J, Carrington M (2004) Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 173:4273–4276PubMedGoogle Scholar
  171. Nichols KE, Ma CS, Cannons JL, Schwartzberg PL, Tangye SG (2005) Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev 203:180–199PubMedGoogle Scholar
  172. Nicoll G, Ni J, Liu D, Klenerman P, Munday J, Dubock S, Mattei MG, Crocker PR (1999) Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem 274:34089–34095PubMedGoogle Scholar
  173. Nicoll G, Avril T, Lock K, Furukawa K, Bovin N, Crocker PR (2003) Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and-independent mechanisms. Eur J Immunol 33:1642–1648PubMedGoogle Scholar
  174. O’Byrne KJ, Dalgleish AG (2001) Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 85:473–483PubMedGoogle Scholar
  175. Olcese L, Lang P, Vély F, Cambiaggi A, Marguet D, Blery M, Hippen KL, Biassoni R, Moretta A, Moretta L, et al (1996) Human and mouse killer-cell inhibitory receptors recruit PTP1C, PTP1D protein tyrosine phosphatases. J Immunol 156:4531–4534PubMedGoogle Scholar
  176. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE, Girardi M, Hayday AC (2005) Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6:928–937PubMedGoogle Scholar
  177. Orange JS (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4:1545–1558PubMedGoogle Scholar
  178. Orange JS, Ballas ZK (2006) Natural killer cells in human health and disease. Clin Immunol 118:1–10PubMedGoogle Scholar
  179. Pancer Z, Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24:497–518PubMedGoogle Scholar
  180. Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201–214PubMedGoogle Scholar
  181. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, et al (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190:1505–1516PubMedGoogle Scholar
  182. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, et al (2005) Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105:2066–2073PubMedGoogle Scholar
  183. Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, Lazzeri E, Lasagni L, Martini S, Rivera P, et al (2006) Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107:2030–2036PubMedGoogle Scholar
  184. Perez OD, Mitchell D, Jager GC, Nolan GP (2004) LFA-1 signaling through p44/42 is coupled to perforin degranulation in CD56+CD8+ natural killer cells. Blood 104:1083–1093PubMedGoogle Scholar
  185. Peruzzi M, Parker KC, Long EO, Malnati MS (1996) Peptide sequence requirements for the recognition of HLA-B.2705 specific natural killer cells. J Immunol 157:3350–3356PubMedGoogle Scholar
  186. Plougastel BF, Yokoyama WM (2006) Extending missing-self? Functional interactions between lectin-like NKrp1 receptors on NK cells with lectin-like ligands. Curr Top Microbiol Immunol 298:77–89PubMedGoogle Scholar
  187. Radaev S, Rostro B, Brooks AG, Colonna M, Sun PD (2001) Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15:1039–1049PubMedGoogle Scholar
  188. Radosavljevic M, Cuillerier B, Wilson MJ, Clement O, Wicker S, Gilfillan S, Beck S, Trowsdale J, Bahram S (2002) A cluster of ten novel MHC class I related genes on human chromosome 6q24.2-q25.3. Genomics 79:114–123PubMedGoogle Scholar
  189. Rajagopalan S, Long EO (1997) The direct binding of a p58 killer cell inhibitory receptor to human histocompatibility leukocyte antigen (HLA)-Cw4 exhibits peptide selectivity. J ExpMed 185:1523–1528Google Scholar
  190. Rajagopalan S, Long EO (2005) Understanding how combinations of HLA and KIR genes influence disease. J Exp Med 201:1025–1029PubMedGoogle Scholar
  191. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790PubMedGoogle Scholar
  192. Raulet DH, Vance RE, McMahon CW (2001) Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 19:291–330PubMedGoogle Scholar
  193. Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89PubMedGoogle Scholar
  194. Robbins SH, Nguyen KB, Takahashi N, Mikayama T, Biron CA, Brossay L (2002) Cutting edge: inhibitory functions of the killer cell lectin-like receptor G1 molecule during the activation of mouse NK cells. J Immunol 168:2585–2589PubMedGoogle Scholar
  195. Robbins SH, Tessmer MS, Mikayama T, Brossay L (2004) Expansion and contraction of the NK cell compartment in response to murine cytomegalovirus infection. J Immunol 173:259–266PubMedGoogle Scholar
  196. Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC, Jabri B (2001) Cutting edge: NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167:5527–5530PubMedGoogle Scholar
  197. Rosen DB, Araki M, Hamerman JA, Chen T, Yamamura T, Lanier LL (2004) A Structural basis for the association of DAP12 with mouse but not human NKG2D. J Immunol 173:2470–2478PubMedGoogle Scholar
  198. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100PubMedGoogle Scholar
  199. Ruggeri L, Capanni M, Mancusi A, Perruccio K, Burchielli E, Martelli MF, Velardi A (2005) Natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Int J Hematol 81:13–17PubMedGoogle Scholar
  200. Russell JH, Ley TJ (2002) Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20:323–370PubMedGoogle Scholar
  201. Sakisaka T, Takai Y (2004) Biology and pathology of nectins and nectin-like molecules. Curr Opin Cell Biol 16:513–521PubMedGoogle Scholar
  202. Salcedo M, Andersson M, Lemieux S, Van Kaer L, Chambers BJ, Ljunggren HG (1998) Fine tuning of natural killer cell specificity and maintenance of self tolerance in MHC class Ideficient mice. Eur J Immunol 28:1315–1321PubMedGoogle Scholar
  203. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukaemia. Blood 102:1389–1396PubMedGoogle Scholar
  204. Sayos J, Nguyen KB, Wu C, Stepp SE, Howie D, Schatzle JD, Kumar V, Biron CA, Terhorst C (2000) Potential pathways for regulation of NK and T-cell responses: differential X-linked lymphoproliferative syndrome gene product SAP interactions with SLAM and 2B4. Int Immunol 12:1749–1757PubMedGoogle Scholar
  205. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals mechanisms and functions. J Leukoc Biol 75:163–189PubMedGoogle Scholar
  206. Screpanti V, Wallin RP, Ljunggren HG, Grandien A (2001) A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol 167:2068–2073PubMedGoogle Scholar
  207. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111PubMedGoogle Scholar
  208. Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, Phillips JH (1996) DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4:573–581PubMedGoogle Scholar
  209. Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L, Moretta A (1997) p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186:1129–1136PubMedGoogle Scholar
  210. Sivori S, Pende D, Bottino C, Marcenaro E, Pessino A, Biassoni R, Moretta L, Moretta A (1999) NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur J Immunol 29:1656–1666PubMedGoogle Scholar
  211. Slifka MK, Pagarigan RR, Whitton JL (2000) NK markers are expressed on a high percentage of virus-specific CD8+ and CD4+ T cells. J Immunol 164:2009–2015PubMedGoogle Scholar
  212. Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, et al (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 99:8826–8831PubMedGoogle Scholar
  213. Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, Kawano T, Pelikan SB, Crowe NY, Godfrey DI (2000a) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668PubMedGoogle Scholar
  214. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA (2000b) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760PubMedGoogle Scholar
  215. Smyth MJ, Crowe NY, Godfrey DI (2001a) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13:459–463PubMedGoogle Scholar
  216. Smyth MJ, Godfrey DI, Trapani JA (2001b) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299PubMedGoogle Scholar
  217. Smyth MJ, Street SE, Trapani JA (2003a) Cutting edge: granzymes A and B are not essential for perforin-mediated tumor rejection. J Immunol 171:515–518PubMedGoogle Scholar
  218. Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MR, Yagita H (2003b) Nature’s TRAIL—on a path to cancer immunotherapy. Immunity 18:1–6PubMedGoogle Scholar
  219. Smyth MJ, Swann J, Kelly JM, Cretney E, Yokoyama WM, Diefenbach A, Sayers TJ, Hayakawa Y (2004) NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200:1325–1335PubMedGoogle Scholar
  220. Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y (2005) NKG2D function protects the host from tumor initiation. J Exp Med 202:583–588PubMedGoogle Scholar
  221. Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y (2006) CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176:1582–1587PubMedGoogle Scholar
  222. Stark S, Watzl C (2006) 2B4 (CD244) NTB-A and CRACC (CS1) stimulate cytotoxicity but no proliferation in human NK cells. Int Immunol 18:241–247PubMedGoogle Scholar
  223. Stewart CA, Laugier-Anfossi F, Vely F, Saulquin X, Riedmuller J, Tisserant A, Gauthier L, Romagne F, Ferracci G, Arosa FA, et al (2005) Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc Natl Acad Sci USA 102:13224–13229PubMedGoogle Scholar
  224. Stewart CA, Vivier E, Colonna M (2006) Strategies of natural killer cell recognition and signaling. Curr Top Microbiol Immunol 298:1–21PubMedGoogle Scholar
  225. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197PubMedGoogle Scholar
  226. Street SE, Trapani JA, MacGregor D, Smyth MJ (2002) Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196:129–134PubMedGoogle Scholar
  227. Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ (2004) Innate immune surveillance of spontaneous B-cell lymphomas by natural killer cells and {gamma}{delta} T cells. J Exp Med 199:879–884PubMedGoogle Scholar
  228. Sutherland CL, Chalupny NJ, Cosman D (2001) The UL16-binding proteins, a novel family of MHC class I-related ligands for NKG2D, activate natural killer cell functions. Immunol Rev 181:185–192PubMedGoogle Scholar
  229. Suzuki Y, Hamamoto Y, Ogasawara Y, Ishikawa K, Yoshikawa Y, Sasazuki T, Muto M (2004) Genetic polymorphisms of killer cell immunoglobulin-like receptors are associated with susceptibility to psoriasis vulgaris. J Invest Dermatol 122:1133–1136PubMedGoogle Scholar
  230. Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A, Honda S, Lanier LL, Shibuya A (2004) Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 16:533–538PubMedGoogle Scholar
  231. Tahara-Hanaoka S, Shibuya K, Kai H, Miyamoto A, Morikawa Y, Ohkochi N, Honda S, Shibuya A (2006) Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 107:1491–1496PubMedGoogle Scholar
  232. Taieb J, Chaput N, Menard C, Apetoh L, Ullrich E, Bonmort M, Pequignot M, Casares N, Terme M, Flament C, et al (2006) A novel dendritic cell subset involved in tumor immunosurveil-lance. Nat Med 12:214–219PubMedGoogle Scholar
  233. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura K (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195:161–169PubMedGoogle Scholar
  234. Talmadge JE, Meyers KM, Prieur DJ, Starkey JR (1980) Role of NK cells in tumour growth and metastasis in beige mice. Nature 284:622–624PubMedGoogle Scholar
  235. Tanaka N, Taniguchi T (2000) The interferon regulatory factors and oncogenesis. Semin Cancer Biol 10:73–81PubMedGoogle Scholar
  236. Tay CH, Welsh RM, Brutkiewicz RR (1995) NK cell response to viral infections in beta 2-microglobulin-deficient mice. J Immunol 154:780–789PubMedGoogle Scholar
  237. Teng MW, Kershaw MH, Hayakawa Y, Cerutti L, Jane SM, Darcy PK, Smyth MJ (2005) T cells gene-engineered with DAP12 mediate effector function in an NKG2D-dependent and major histocompatibility complex-independent manner. J Biol Chem 280:38235–38241PubMedGoogle Scholar
  238. Tomasello E, Vivier E (2005) KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. Eur J Immunol 35:1670–1677PubMedGoogle Scholar
  239. Tomasello E, Blery M, Vély E, Vivier E (2000) Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells. Semin Immunol 12:139–147PubMedGoogle Scholar
  240. Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376PubMedGoogle Scholar
  241. Trowsdale J, Barten R, Haude A, Stewart CA, Beck S, Wilson MJ (2001) The genomic context of natural killer receptor extended gene families. Immunol Rev 181:20–38PubMedGoogle Scholar
  242. Urmacher C, Cordon-Cardo C, Houghton AN (1989) Tissue distribution of GD3 ganglioside detected by mouse monoclonal antibody R24. Am J Dermatopathol 11:577–581PubMedGoogle Scholar
  243. Vales-Gomez M, Reyburn H, Strominger J (2000) Interaction between the human NK receptors and their ligands. Crit Rev Immunol 20:223–244PubMedGoogle Scholar
  244. Vales-Gomez M, Reyburn HT, Erskine RA, Strominger J (1998) Differential binding to HLA-C of p50-activating and p58-inhibitory natural killer cell receptors. Proc Natl Acad Sci USA 95:14326–14331PubMedGoogle Scholar
  245. Vales-Gomez M, Reyburn HT, Erskine RA, Lopez-Botet M, Strominger JL (1999) Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J 18:4250–4260PubMedGoogle Scholar
  246. Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D’Andrea A, Phillips JH, Lanier LL, Parham P (1997) Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 7:739–751PubMedGoogle Scholar
  247. van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184:1781–1790PubMedGoogle Scholar
  248. van der Slik AR, Koeleman BP, Verduijn W, Bruining GJ, Roep BO, Giphart MJ (2003) KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes 52:2639–2642PubMedGoogle Scholar
  249. Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH (1998) Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 188:1841–1848PubMedGoogle Scholar
  250. Veillette A, Latour S (2003) The SLAM family of immune-cell receptors. Curr Opin Immunol 15:277–285PubMedGoogle Scholar
  251. Vely F, Vivier E (2005a) Natural killer cell receptor signaling pathway. Sci STKE 2005:cm6Google Scholar
  252. Vely F, Vivier E (2005b) Natural killer cell receptor signaling pathway in mammals. Sci STKE 2005:cm7Google Scholar
  253. Vély F, Vivier E (1997) Commentary: conservation of structural features reveals the existence of a large family of inhibitory cell surface receptors and non-inhibitory/activatory counterparts. J Immunol 159:2075–2077PubMedGoogle Scholar
  254. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, Augugliaro R, Moretta L, Moretta A (1998) NKp44 a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187:2065–2072PubMedGoogle Scholar
  255. Vitale M, Zimmer J, Castriconi R, Hanau D, Donato L, Bottino C, Moretta L, de la Salle H, Moretta A (2002) Analysis of natural killer cells in TAP2-deficient patients: expression of functional triggering receptors and evidence for the existence of inhibitory receptor(s) that prevent lysis of normal autologous cells. Blood 99:1723–1729PubMedGoogle Scholar
  256. Vivier E, Biron CA (2002) A pathogen receptor on natural killer cells. Science 296:1248–1249PubMedGoogle Scholar
  257. Vivier E, Daëron M (1997) Immunoreceptor tyrosine-based inhibition motifs (ITIMs). Immunol Today 18:286–291PubMedGoogle Scholar
  258. Vivier E, Malissen B (2005) Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat Immunol 6:17–21PubMedGoogle Scholar
  259. Vivier E, Tomasello E, Paul P (2002) Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr Opin Immunol 14:306–311PubMedGoogle Scholar
  260. Vivier E, Nunes JA, Vely F (2004) Natural killer cell signaling pathways. Science 306: 1517–1519PubMedGoogle Scholar
  261. Voehringer D, Blaser C, Brawand P, Raulet DH, Hanke T, Pircher H (2001) Viral infections induce abundant numbers of senescent CD8 T cells. J Immunol 167:4838–4843PubMedGoogle Scholar
  262. Voehringer D, Koschella M, Pircher H (2002) Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood 100:3698–3702PubMedGoogle Scholar
  263. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E (2005) Natural killer cells and dendritic cells: “l’union fait la force”. Blood 106:2252–2258PubMedGoogle Scholar
  264. Walzer T, Bléry M, Chaix J, Fuseri N, Chasson C, Robbins SH, Jaeger S, André P, Gauthier L, Daniel L, Chemin K, Morel Y. Dalod M, Imbert J, Pierres M, Moretta A, Romagné F, Vivier E (2007) Identification, activation and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl Acad Sci 104:3384–3389PubMedGoogle Scholar
  265. Warren HS, Jones AL, Freeman C, Bettadapura J, Parish CR (2005) Evidence that the cellular ligand for the human NK cell activation receptor NKp30 is not a heparan sulfate glycosaminoglycan. J Immunol 175:207–212PubMedGoogle Scholar
  266. Westwood JA, Kelly JM, Tanner JE, Kershaw MH, Smyth MJ, Hayakawa Y (2004) Cutting edge: novel priming of tumor-specific immunity by NKG2D-triggered NK cell-mediated tumor rejection and Th1-independent CD4(+) T-cell pathway. J Immunol 172:757–761PubMedGoogle Scholar
  267. Williams F, Meenagh A, Sleator C, Cook D, Fernandez-Vina M, Bowcock AM, Middleton D (2005) Activating killer cell immunoglobulin-like receptor gene KIR2DS1 is associated with psoriatic arthritis. Hum Immunol 66:836–841PubMedGoogle Scholar
  268. Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437:141–146PubMedGoogle Scholar
  269. Wilson JL, Charo J, Martin-Fontecha A, Dellabona P, Casorati G, Chambers BJ, Kiessling R, Bejarano MT, Ljunggren HG (1999) NK cell triggering by the human costimulatory molecules CD80 and CD86. J Immunol 163:4207–4212PubMedGoogle Scholar
  270. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732PubMedGoogle Scholar
  271. Yamaji T, Teranishi T, Alphey MS, Crocker PR, Hashimoto Y (2002) A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to alpha 2,8-disialyl and branched alpha 2,6-sialyl residues. A comparison with Siglec-9. J Biol Chem 277:6324–6332PubMedGoogle Scholar
  272. Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P (2006) Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med 203:633–645PubMedGoogle Scholar
  273. Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM, Goronzy JJ (2001) Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 193:1159–1167PubMedGoogle Scholar
  274. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706PubMedGoogle Scholar
  275. Zappacosta F, Borrego F, Brooks AG, Parker KC, Coligan JE (1997) Peptides isolated from HLA-CW 0304 confer different degrees of protection from natural killer cell-mediated lysis. Proc Natl Acad Sci USA 94:6313–6318PubMedGoogle Scholar
  276. Zhang J, Croy BA, Tian Z (2005) Uterine natural killer cells: their choices, their missions. Cell Mol Immunol 2:123–129PubMedGoogle Scholar
  277. Zilka A, Landau G, Hershkovitz O, Bloushtain N, Bar-Ilan A, Benchetrit F, Fima E, van Kuppevelt TH, Gallagher JT, Elgavish S, Porgador A (2005) Characterization of the heparin/heparin sulfate binding site of the natural cytotoxicity receptor NKp46. iochemistry 44:14477–14485Google Scholar
  278. Zimmer J, Donato L, Hanau D, Cazenave JP, Tongio MM, Moretta A, de la Salle H (1998) Activity and phenotype of natural killer cells in peptide transporter (TAP)-deficient patients (type I bare lymphocyte syndrome). J Exp Med 187:117–122PubMedGoogle Scholar
  279. Zimmer J, Donato L, Hanau D, Cazenave JP, Moretta A, Tongio MM, de la Salle H (1999) Inefficient protection of human TAP-deficient fibroblasts from autologous NK cell-mediated lysis by cytokines inducing HLA class I expression. Eur J Immunol 29:1286–1291PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • C. Andrew Stewart
    • 1
    • 2
    • 3
  • Eric Vivier
    • 1
    • 2
    • 3
    • 4
  1. 1.Laboratory of NK cells and Innate Immunity, Centre d’Immunologie de Marseille-LuminyINSERM, U631MarseilleFrance
  2. 2.Université de la Méditerranée, Case 906Marseille Cedex 9France
  3. 3.CNRS, UMR6102MarseilleFrance
  4. 4.Hôpital de la ConceptionAssistance Publique-HÔpitaux de MarseilleMarseilleFrance

Personalised recommendations