Skip to main content

Chronic Fatigue Syndrome

  • Chapter
Fatigue Science for Human Health

Abstract

Chronic fatigue syndrome (CFS) is an operational concept for clarifying the unknown etiology of the syndrome characterized by the sensation of abnormally prolonged fatigue. The vast majority of patients with CFS are interrupted in their daily or social lives by prolonged fatigue, headache, myalgia, arthralgia, sleep disturbance, or brain dysfunctions. However, the pathogenesis of CFS remains unclear, and so there are still many medical doctors around the world who are skeptical about the disease.

Recently, we organized a study group of Japanese investigators from various fields, such as virology, immunology, endocrinology, physiology, biochemistry, psychiatry, and neuroscience, and as a result of the efforts of this group the mechanism underlying CFS is now becoming a little clearer. We are now able to suggest that CFS can be understood to be a special condition based on an abnormality of the psycho-neuro-endocrino-immunological system caused by psycho-social stress, and which has some genetic components. A reactivation of various types of herpes virus infections and/or chronic mycoplasma infection might occur as a result of immune dysfunction, causing the abnormal production of several cytokines. A distinctive feature of CFS is thought to be a secondary brain dysfunction caused by the abnormal production of such cytokines.

In this chapter, we would like to introduce not only the recent findings on the pathogenesis of CFS, but also the prevalence, diagnosis, therapy, and prognosis of CFS in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holmes GP, Kaplan JE, Gantz NM, Komaroff AL, Schonberger LB, Strauss SE, Jones JF, Dubois RE, Cunningham-Rundles C, Pahwa S, Tosato G, Zegans LS, Purtilo DT, Browh N, Schooles RT, Brus I (1988) Chronic fatigue syndrome: a working case definition. Ann Intern Med 108:387–389

    PubMed  CAS  Google Scholar 

  2. Holmes TH, Rahe RH (1967) The social readjustment rating scale. J Psychosom Res 11:213–218

    Article  PubMed  CAS  Google Scholar 

  3. Narita M, Nishigami N, Narita N, Yamaguti K, Okado N, Watanabe Y, Kuratsune H (2003) Association between serotonin transporter gene polymorphism and chronic fatigue syndrome. Biochem Biophys Res Commun 311(2):264–266

    Article  PubMed  CAS  Google Scholar 

  4. Klimas NG, Salvato FR, Morgan R, Fletcher MA (1990) Immunologic abnormalities in chronic fatigue syndrome. J Clin Microbiol 28(6):1403–1410

    PubMed  CAS  Google Scholar 

  5. Bennett AL, Chao CC, Hu S, Buchwald D, Fagioli LR, Schur PH, Peterson PK, Komaroff AL (1997) Elevation of bioactive transforming growth factor-beta in serum from patients with chronic fatigue syndrome. J Clin Immunol 17(2):160–166

    Article  PubMed  CAS  Google Scholar 

  6. Moss RB, Mercandetti A, Vojdani A (1999) TNF-alpha and chronic fatigue syndrome. J Clin Immunol 19(5):314–316

    Article  PubMed  CAS  Google Scholar 

  7. Suhadolnik RJ, Reichenbach NL, Hitzges P, Sobol RW, Peterson DL, Henry B, Ablashi DV, Müller WE, Schröder HC, Carter WA, Strayer DR (1994) Upregulation of the 2-5A synthetase/ RNase L antiviral pathway associated with chronic fatigue syndrome. Clin Infect Dis 18(Suppl 1):S96–104

    PubMed  Google Scholar 

  8. Ikuta I, Yamada T, Shimomura T, Kuratsune H, Kawahara R, Ikawa S, Ohnishi E, Sokawa Y, Fukushi H, Hirai K, Watanabe Y, Kurata T, Kitani T, Sairenji T (2003) Diagnostic evaluation for 2′,5′-oligoadenylate synthetase activities and antibodies against Epstein-Barr virus and Coxiella burnetii in patients with chronic fatigue syndrome in Japan. Microbes Infect 5(12):1096–1102

    Article  PubMed  CAS  Google Scholar 

  9. Demettre E, Bastide L, D’Haese A, De Smet K, De Meirleir K, Tiev KP, Englebienne P, Lebleu B (2002) Ribonuclease L proteolysis in peripheral blood mononuclear cells of chronic fatigue syndrome patients. J Biol Chem 277(38):35746–35751

    Article  PubMed  CAS  Google Scholar 

  10. Katafuchi T, Kondo T, Yasaka T, Kubo K, Take S, Yoshimura M (2003) Prolonged effects of polyriboinosinic:polyribocytidylic acid on spontaneous running-wheel activity and brain interferon-alpha mRNA in rats: a model for immunologically induced fatigue. Neuroscience 120(3):837–845

    Article  PubMed  CAS  Google Scholar 

  11. Inoue K, Yamazaki H, Manabe Y, Fukuda C, Hanai K, Fushiki T (1999) Transforming growth factor-beta activated during exercise in brain depresses spontaneous motor activity of animals. Relevance to central fatigue. Brain Res 846(2):145–153

    Article  PubMed  CAS  Google Scholar 

  12. Stankovic AK, Dion LD, Parker CR Jr. (1994) Effects of transforming growth factor-beta on human fetal adrenal steroid production. Mol Cell Endocrinol 99(2):145–151

    Article  PubMed  CAS  Google Scholar 

  13. Chiu KM, Schmidt MJ, Shug AL, Binkley N, Gravenstein S (1997) Effect of dehydroepiandrosterone sulfate on carnitine acetyl transferase activity and L-carnitine levels in oophorectomized rats. Biochim Biophys Acta 1344(3):201–209

    PubMed  CAS  Google Scholar 

  14. Kuratsune H, Yamaguti K, Sawada M, Kodate S, Machii T, Kanakura Y, Kitani T (1998) Dehydroepiandrosterone sulfate deficiency in chronic fatigue syndrome. Int J Mol Med 1:143–146

    PubMed  CAS  Google Scholar 

  15. Kuratsune H, Yamaguti K, Takahashi M, Misaki H, Tagawa S, Kitani T (1994) Acylcarnitine deficiency in chronic fatigue syndrome. Clin Infect Dis 18(Suppl 1):S62–S67

    PubMed  Google Scholar 

  16. Tanaka S, Kuratsune H, Hidaka Y, Hakariya Y, Tatsumi KI, Takano T, Kanakura Y, Amino N (2003) Autoantibodies against muscarinic cholinergic receptor in chronic fatigue syndrome. Int J Mol Med 12:225–230

    PubMed  CAS  Google Scholar 

  17. Levy JA (1994) Viral studies of chronic fatigue syndrome. Clin Infect Dis 18(Suppl 1): S117–120

    PubMed  Google Scholar 

  18. Ablashi DV, Eastman HB, Owen CB, Roman MM, Friedman J, Zabriskie JB, Peterson DL, Pearson GR, Whitman JE (2000) Frequent HHV-6 reactivation in multiple sclerosis (MS) and chronic fatigue syndrome (CFS) patients. J Clin Virol 16(3):179–191

    Article  PubMed  CAS  Google Scholar 

  19. Vojdani A, Choppa PC, Tagle C, Andrin R, Samimi B, Lapp CW (1998) Detection of Mycoplasma genus and Mycoplasma fermentans by PCR in patients with chronic fatigue syndrome. FEMS Immunol Med Microbiol 22(4):355–365

    Article  PubMed  CAS  Google Scholar 

  20. Nakaya T, Takahashi H, Nakamura Y, Asahi S, Tobiume M, Kuratsune H, Kitani T, Yamanishi K, Ikuta K (1996) Demonstration of Borna disease virus RNA in peripheral blood mononuclear cells derived from Japanese patients with chronic fatigue syndrome. FEBS Lett 378:145–149

    Article  PubMed  CAS  Google Scholar 

  21. Nakaya T, Takahashi H, Nakamur Y, Kuratsune H, Kitani T, Machii T, Yamanishi K, Ikuta K (1999) Borna disease virus infection in two family clusters of patients with chronic fatigue syndrome. Microbiol Immunol 43(7):679–689

    PubMed  CAS  Google Scholar 

  22. Evengård B, Briese T, Lindh G, Lee S, Lipkin WI (1999) Absence of evidence of Borna disease virus infection in Swedish patients with chronic fatigue syndrome. J Neurovirol 5(5):495–499

    Article  PubMed  Google Scholar 

  23. Demitrack MA, Dale JK, Straus SE, Laue L, Listwak SJ, Kruesi MJ, Chrousos GP, Gold PW (1991) Evidence for impaired activation of the hypothalamic-pituitary-adrenal axis in patients with chronic fatigue syndrome. J Clin Endocrinol Metab 73(6):1224–1234

    Article  PubMed  CAS  Google Scholar 

  24. Roberts AD, Wessely S, Chalder T, Papadopoulos A, Cleare AJ (2004) Salivary cortisol response to awakening in chronic fatigue syndrome. Br J Psychiatr 184:136–131

    Article  Google Scholar 

  25. Gaab J, Engert V, Heitz V, Schad T, Schürmeyer TH, Ehlert U (2004) Associations between neuroendocrine responses to the insulin tolerance test and patient characteristics in chronic fatigue syndrome. J Psychosom Res 56(4):419–424

    Article  PubMed  Google Scholar 

  26. Gaab J, Hüster D, Peisen R, Engert V, Schad T, Schürmeyer TH, Ehlert U (2002) Low-dose dexamethasone suppression test in chronic fatigue syndrome and health. Psychosom Med 64(2):311–318

    PubMed  CAS  Google Scholar 

  27. Rebouche CJ (1988) Carnitine metabolism and human nutrition. J Appl Nutr 40:99–111

    Google Scholar 

  28. Yamaguti K, Kuratsune H, Watanabe Y, Takahashi M, Nakamoto I, Machii T, Jacobsson G, Onoe H, Matsumura K, Valind S, Langstrom B, Kitani T (1996) Acylcarnitine metabolism during fasting and after refeeding. Biochem Biophys Res Commun 225:740–746

    Article  PubMed  CAS  Google Scholar 

  29. Kuratsune H, Yamaguti K, Lindh G, Evengård B, Hagberg G, Matsumura K, Iwase M, Onoe H, Takahashi M, Machii T, Kanakura Y, Kitani T, Långström B, Watanabe Y (2002) Brain regions involved in fatigue sensation: reduced acetylcarnitine uptake into the brain. Neuroimage 17(3):1256–1265

    Article  PubMed  Google Scholar 

  30. Plioplys AV, Plioplys S (1995) Serum levels of carnitine in chronic fatigue syndrome: clinical correlates. Biol Psychiatr 32:132–138

    CAS  Google Scholar 

  31. Soetekouw PM, Wevers RA, Vreken P, Elving LD, Janssen AJ, van der Veen Y, Bleijenberg G, van der Meer JW (2000) Normal carnitine levels in patients with chronic fatigue syndrome. Neth J Med 57(1):20–24

    Article  PubMed  CAS  Google Scholar 

  32. Jones MG, Goodwin CS, Amjad S, Chalmers RA (2005) Plasma and urinary carnitine and acylcarnitines in chronic fatigue syndrome. Clin Chim Acta 360(1–2):173–177

    Article  PubMed  CAS  Google Scholar 

  33. Vermeulen RC, Scholte HR (2006) Azithromycin in chronic fatigue syndrome (CFS): an analysis of clinical data. J Trans Med 4:34

    Article  CAS  Google Scholar 

  34. Vermeulen RC, Scholte HR (2004) Exploratory open label, randomized study of acetyl-and propionylcarnitine in chronic fatigue syndrome. Psychosom Med 66(2):276–282

    Article  PubMed  CAS  Google Scholar 

  35. Kuratsune H, Yamaguti K, Watanabe Y, Takahashi M, Nakamoto I, Machii T, Jacobson GB, Onoe H, Matsumura T, Valind S, Langstrom B, Kitani T (1997) Acylcarnitine and chronic fatigue syndrome. In: DeSimone C, Famularo G (eds) Carnitine today. Molecular Biology Intelligence Unit, Landes Bioscience, pp 195–213

    Google Scholar 

  36. Natelson BH, Cohen JM, Brassloff I, Lee HJ (1993) A controlled study of brain magnetic resonance imaging in patients with the chronic fatigue syndrome. J Neurol Sci 120(2):213–217

    Article  PubMed  CAS  Google Scholar 

  37. Greco A, Tannock C, Brostoff J, Costa DC (1997) Brain MR in chronic fatigue syndrome. Am J Neuroradiol 18(7):1265–1269

    PubMed  CAS  Google Scholar 

  38. Lange G, DeLuca J, Maldjian JA, Lee H, Tiersky LA, Natelson BH (1999) Brain MRI abnormalities exist in a subset of patients with chronic fatigue syndrome. J Neurol Sci 171(1):1–2

    Article  Google Scholar 

  39. Cook DB, Lange G, DeLuca J, Natelson BH (2001) Relationship of brain MRI abnormalities and physical functional status in chronic fatigue syndrome. Int J Neurosci 107(1–2):1–6

    Article  PubMed  CAS  Google Scholar 

  40. Okada T, Tanaka M, Kuratsune H, Watanabe Y, Sadato N (2004) Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome. BMC Neurol 4(1):14

    Article  PubMed  Google Scholar 

  41. de Lange FP, Kalkman JS, Bleijenberg G, Hagoort P, van der Meer JW, Toni I (2005) Gray matter volume reduction in chronic fatigue syndrome. Neuroimage 26(3):777–781

    Article  PubMed  Google Scholar 

  42. Ichise M, Salit IE, Abbey SE, Chung DG, Gray B, Kirsh JC, Freedman M (1992) Assessment of regional cerebral perfusion by 99Tcm-HMPAO SPECT in chronic fatigue syndrome. Nucl Med Commun 13:767–772

    Article  PubMed  CAS  Google Scholar 

  43. Costa DC, Tannock C, Brostoff J (1995) Brainstem perfusion is impaired in chronic fatigue syndrome. QJM 88:767–773

    PubMed  CAS  Google Scholar 

  44. Fischler B, D’Haenen H, Cluydts R, Michiels V, Demets K, Bossuyt A, Kaufman L, De Meirleir K (1996) Comparison of 99m Tc HMPAO SPECT scan between chronic fatigue syndrome, major depression and healthy controls: an exploratory study of clinical correlates of regional cerebral blood flow. Neuropsychobiology 34:175–183

    Article  PubMed  CAS  Google Scholar 

  45. Tirelli U, Chierichetti F, Tavio M, Simonelli C, Bianchin G, Zanco P, Ferlin G (1998) Brain positron emission tomography (PET) in chronic fatigue syndrome: preliminary data. Am J Med 105(3A):54S–58S

    Article  PubMed  CAS  Google Scholar 

  46. Siessmeier T, Nix WA, Hardt J, Schreckenberger M, Egle UT, Bartenstein P (2003) Observer-independent analysis of cerebral glucose metabolism in patients with chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 74(7):922–928

    Article  PubMed  CAS  Google Scholar 

  47. Yamamoto S, Ouchi Y, Onoe H, Yoshikawa E, Tsukada H, Takahashi H, Iwase M, Yamaguti K, Kuratsune H, Watanabe Y (2004) Reduction of serotonin transporters in patients with chronic fatigue syndrome. Neuroreport 15:2571–2574

    Article  PubMed  CAS  Google Scholar 

  48. Demettre E, Bastide L, D’Haese A, De Smet K, De Meirleir K, Tiev KP, Englebienne P, Lebleu B (2002) Ribonuclease L proteolysis in peripheral blood mononuclear cells of chronic fatigue syndrome patients. J Biol Chem 277(38):35746–35751

    Article  PubMed  CAS  Google Scholar 

  49. Oliff A, Defeo-Jones D, Boyer M, Martinez D, Kiefer D, Vuocolo G, Wolfe A, Socher SH (1987) Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 50(4):555–563

    Article  PubMed  CAS  Google Scholar 

  50. Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A (1994) The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med 121(12):953–959

    PubMed  CAS  Google Scholar 

  51. Bode L, Dietrich DE, Stoyloff R, Emrich HM, Ludwig H (1997) Amantadine and human Borna disease virus in vitro and in vivo in an infected patient with bipolar depression. Lancet 349(9046):178–179

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Kuratsune, H., Watanabe, Y. (2008). Chronic Fatigue Syndrome. In: Watanabe, Y., Evengård, B., Natelson, B.H., Jason, L.A., Kuratsune, H. (eds) Fatigue Science for Human Health. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73464-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-73464-2_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-73463-5

  • Online ISBN: 978-4-431-73464-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics