Skip to main content

Lactate Is Not a Cause of Fatigue

  • Chapter
Fatigue Science for Human Health

Abstract

For many years, it has generally been believed that the accumulations of lactate (lactic acid) in muscles and in the central nervous system are associated with peripheral and central nervous system fatigue, respectively. We conducted an overview of the roles of lactate, which have recently been clarified, under the condition of fatigue. First, the intra-cellular acidification of muscle caused by an accumulation of lactate has protective effects during muscle fatigue. The excitation-induced accumulation of extracellular K+ leads action potentials to be a less effective trigger of Ca2+ release in working muscles, and acidification by the accumulation of lactate reduces this effect by decreasing the contribution of Cl channels, which act to keep the membrane potential near the Cl reversal potential. Since the Cl reversal potential is near the resting membrane potential, the effect of Cl channel activity is to increase the Na+ current necessary to generate an action potential, which triggers Ca2+ release. Second, in the central nervous system, lactate generated in astrocytes contributes to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission, and administered lactate can also be utilized as energy substrates. Finally, an increased blood lactate level during muscle fatigue is not associated with central fatigue. From these results, we can conclude that lactate is a favorable substrate rather than the cause of fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stephenson DG, Lamb GD, Stephenson GM (1998) Events of the excitation-contraction-relaxation (E-C-R) cycle in fast-and slow-twitch mammalian muscle fibres relevant to muscle fatigue. Acta Physiol Scand 162:229–245

    Article  PubMed  CAS  Google Scholar 

  2. Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    PubMed  CAS  Google Scholar 

  3. Sjogaard G (1988) Muscle energy metabolism and electrolyte shifts during low-level prolonged static contraction in man. Acta Physiol Scand 134:181–187

    Article  PubMed  CAS  Google Scholar 

  4. Sejersted OM, Sjogaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80:1411–1481

    PubMed  CAS  Google Scholar 

  5. Hill AV, Kupalov P (1929) Proc R Soc London Ser 105:313

    Article  CAS  Google Scholar 

  6. Lamb GD, Stephenson DG (1994) Effects of intra-cellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 478:331–339

    PubMed  CAS  Google Scholar 

  7. Westerblad H, Allen DG, Lannergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 17:17–21

    PubMed  CAS  Google Scholar 

  8. Ruff RL (1996) Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types. Acta Physiol Scand 156:159–168

    Article  PubMed  CAS  Google Scholar 

  9. Nielsen OB, de Paoli F, Overgaard K (2001) Protective effects of lactic acid on force production in rat skeletal muscle. J Physiol 536:161–166

    Article  PubMed  CAS  Google Scholar 

  10. Pedersen TH, Nielsen OB, Lamb GD, Stephenson DG (2004) Intra-cellular acidosis enhances the excitability of working muscle. Science 305:1144–1147

    Article  PubMed  CAS  Google Scholar 

  11. Allen D, Westerblad H (2004) Lactic acid: the latest performance-enhancing drug. Science 305:1112–1113

    Article  PubMed  CAS  Google Scholar 

  12. Dringen R, Wiesinge H, Hamprecht B (1993) Uptake of L-lactate by cultured rat brain neurons. Neurosci Lett 163:5–7

    Article  PubMed  CAS  Google Scholar 

  13. Nedergaard M, Goldman SA (1993) Carrier-mediated transport of lactic acid in cultured neurons and astrocytes. Am J Physiol 265:282–289

    Google Scholar 

  14. Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240:1326–1328

    Article  PubMed  CAS  Google Scholar 

  15. Sakurai T, Yang B, Takata T, Yokono K (2002) Synaptic adaptation to repeated hypoglycemia depends on the utilization of monocarboxylates in guinea pig hippocampal slices. Diabetes 51:430–438

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka M, Nakamura F, Mizokawa S, Matsumura A, Matsumura K, Murata T, Shigematsu M, Kageyama K, Ochi H, Watanabe Y (2004) Role of lactate in the brain energy metabolism: revealed by bioradiography. Neurosci Res 48:13–20

    Article  PubMed  CAS  Google Scholar 

  17. Maran A, Cranston I, Lomas J, Macdonald I, Amiel SA (1994) Protection by lactate of cerebral function during hypoglycaemia. Lancet 343:16–20

    Article  PubMed  CAS  Google Scholar 

  18. Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 23:658–664

    Article  PubMed  CAS  Google Scholar 

  19. Rosenberg PA, Dichter MA (1985) Glycogen accumulation in rat cerebral cortex in dissociated cell culture. J Neurosci Methods 15:101–112

    Article  PubMed  CAS  Google Scholar 

  20. Kato K, Shimizu A, Kurobe N, Takashi M, Koshikawa T (1989) Human brain-type glycogen phosphorylase: quantitative localization in human tissues determined with an immunoassay system. J Neurochem 52:1425–1432

    Article  PubMed  CAS  Google Scholar 

  21. Ignacio PC, Baldwin BA, Vijayan VK, Tait RC, Gorin FA (1990) Brain isozyme of glycogen phosphorylase: immunohistological localization within the central nervous system. Brain Res 529:42–49

    Article  PubMed  CAS  Google Scholar 

  22. Swanson RA (1992) Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70:138–144

    Google Scholar 

  23. Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    PubMed  CAS  Google Scholar 

  24. Gehardt Hansen W (1968) Lactate dehydrogenase isoenzymes in the central nervous system. Dan Med Bull 15:111–112

    Google Scholar 

  25. Bishop MJ, Everse J, Kaplan NO (1972) Identification of lactate dehydrogenase isoenzymes by rapid kinetics. Proc Natl Acad Sci USA 69:1761–1765

    Article  PubMed  CAS  Google Scholar 

  26. Izumi Y, Benz AM, Katsuki H, Zorumski CF (1981) Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation. J Neurosci 17:9448–9457

    Google Scholar 

  27. Magistretti PJ (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209: 2304–2311

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura F, Tanaka M, Matsumura A, Mizokawa S, Watanabe Y (1994) Biochemical adaptations of rats from fatigue by modified forced swim. 32nd Annual Meeting Society for Neuroscience 385:18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Tanaka, M., Watanabe, Y. (2008). Lactate Is Not a Cause of Fatigue. In: Watanabe, Y., Evengård, B., Natelson, B.H., Jason, L.A., Kuratsune, H. (eds) Fatigue Science for Human Health. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73464-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-73464-2_16

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-73463-5

  • Online ISBN: 978-4-431-73464-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics