Skip to main content

Mechanism of Fatigue Studied in a Newly Developed Animal Model of Combined (Mental and Physical) Fatigue

  • Chapter
Book cover Fatigue Science for Human Health

Abstract

Recently, we established an animal model of combined (mental and physical) fatigue. To make this model, we kept rats for 5 days in a cage filled with water (23 ± 1°C) to a height of 1.5 cm, and for an evaluation of the extent of fatigue, a weight-loaded forced swimming test was used. The fatigued animals showed reduced brain energy utilization as compared with the controls. Although acutely stressed rats showed increased turnover of serotonin and dopamine in the brain, the fatigued rats did not show any change in the levels of these neurotransmitters and the metabolites in the brain regions in which the synaptic terminals are abundant. Hence, decreased energy utilization induced by prolonged deprivation of rest may introduce a vicious cycle of fatigue and lead to insufficient activation of the serotonin and dopamine systems in the brain. Since the serotonin and dopamine systems are not activated properly under the condition of fatigue, the fatigue sensation and physical activity may become insufficient, and in the terminal stage, long-term deprivation of rest may lead to death (Karoshi). We also found that by using this animal model of fatigue, we could screen for candidates for antifatigue substances for human use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tanaka M, Nakamura F, Mizokawa S, Matsumura A, Nozaki S, Watanabe Y (2003) Establishment and assessment of a rat model of fatigue. Neurosci Lett 352:159–162

    Article  PubMed  CAS  Google Scholar 

  2. Moriura T, Matsuda H, Kubo M (1996) Pharmacological study on Agkistrodon blomhoffii blomhoffii BOIE. V. anti-fatigue effect of the 50% ethanol extract in acute weight-loaded forced swimming-treated rats. Biol Pharm Bull 19:62–66

    PubMed  CAS  Google Scholar 

  3. Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344

    Article  PubMed  CAS  Google Scholar 

  4. Atwood HL, Lang F, Morin WA (1972) Synaptic vesicles: selective depletion in crayfish excitatory and inhibitory axons. Science 176:1353–1355

    Article  PubMed  CAS  Google Scholar 

  5. Nguyen PV, Marin L, Atwood HL (1997) Synaptic physiology and mitochondrial function in crayfish tonic and phasic motor neurons. J Neurophysiol 78:281–294

    Article  PubMed  CAS  Google Scholar 

  6. Llinas R, Sugimori M, Lin JWL, Leopold PL, Brady ST (1989) ATP-dependent directional movement of rat synaptic vesicles injected into the presynaptic terminal of squid giant synapse. Proc Natl Acad Sci USA 86:5656–5660

    Article  PubMed  CAS  Google Scholar 

  7. Tanaka M, Watanabe Y (2008) Reduced energy utilization in the brain is a feature of an animal model of fatigue. Int J Neurosci (in press)

    Google Scholar 

  8. Nakahara H, Kanno T, Inai Y, Utsumi K, Hiramatsu M, Mori A, Packer L (1998) Mitochondrial dysfunction in the senescence-accelerated mouse (SAM). Free Radic Biol Med 24:85–92

    Article  PubMed  CAS  Google Scholar 

  9. Sibille B, Ronot X, Filippi C, Nogueira V, Keriel C, Leverve X (1988) 2,4-dinitrophenol uncoupling effect on delta psi in living hepatocytes depends on reducing equivalent supply. Cytometry 32:102–108

    Article  Google Scholar 

  10. Meeusen R, De-Meirleir K (1995) Exercise and brain neurotransmission. Sports Med 20:160–188

    Article  PubMed  CAS  Google Scholar 

  11. Bailey SP, Davis JM (1993) Serotonergic agonists and antagonists affect endurance performance in the rat. Int J Sports Med 14:330–333

    Article  PubMed  CAS  Google Scholar 

  12. Bhagat B, Wheeler N (1973) Effect of amphetamine on the swimming endurance of rats. Neuropharmacology 12:711–713

    Article  PubMed  CAS  Google Scholar 

  13. Heyes MP, Garnett ES, Coates G (1988) Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Sci 42:1537–1542

    Article  PubMed  CAS  Google Scholar 

  14. Davis LM, Bailey SP (1997) Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc 29:45–57

    PubMed  CAS  Google Scholar 

  15. Giraldez L, Diaz-Hernandez M, Gomez-Villafuertes R, Pintor J, Castro E, Miras-Portugal MT (2001) Adenosine triphosphate and diadenosine pentaphosphate induce [Ca(2+)](i) increase in rat basal ganglia aminergic terminals. J Neurosci Res 64:174–182

    Article  PubMed  CAS  Google Scholar 

  16. Inoue K, Yamazaki H, Manabe Y, Fukuda C, Hanai K, Fushiki T (1999) Transforming growth factor-beta activated during exercise in brain depresses spontaneous motor activity of animals. Relevance to central fatigue. Brain Res 846:145–153

    Article  PubMed  CAS  Google Scholar 

  17. Liu J, Wang X, Shigenaga MK, Yeo HC, Mori A, Ames BN (1996) Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 10:1532–1538

    PubMed  CAS  Google Scholar 

  18. Kodama M, Kodama T, Murakami M (1996) The value of the dehydroepiandrosteroneannexed vitamin C infusion treatment in the clinical control of chronic fatigue syndrome (CFS). II. Characterization of CFS patients with special reference to their response to a new vitamin C infusion treatment. In Vivo 10:585–596

    PubMed  CAS  Google Scholar 

  19. Kodama M, Kodama T, Murakami M (1996) The value of the dehydroepiandrosteroneannexed vitamin C infusion treatment in the clinical control of chronic fatigue syndrome (CFS). I. A pilot study of the new vitamin C infusion treatment with a volunteer CFS patient. In Vivo 10:575–584

    PubMed  CAS  Google Scholar 

  20. Cleare AJ, O’Keane V, Miell JP (2004) Levels of DHEA and DHEAS and responses to CRH stimulation and hydrocortisone treatment in chronic fatigue syndrome. Psychoneuroendocrinology 29:724–732

    Article  PubMed  CAS  Google Scholar 

  21. Scott LV, Salahuddin F, Cooney J, Svec F, Dinan TG (1999) Differences in adrenal steroid profile in chronic fatigue syndrome, in depression and in health. J Affect Disord 54:129–137

    Article  PubMed  CAS  Google Scholar 

  22. Kuratsune H, Yamaguti K, Sawada M, Kodate S, Machii T, Kanakura Y, Kitani T (1998) Dehydroepiandrosterone sulfate deficiency in chronic fatigue syndrome. Int J Mol Med 1:143–146

    PubMed  CAS  Google Scholar 

  23. Vermeulen RC, Scholte HR (2004) Exploratory open label, randomized study of acetyl-and propionylcarnitine in chronic fatigue syndrome. Psychosom Med 66:276–282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Tanaka, M., Watanabe, Y. (2008). Mechanism of Fatigue Studied in a Newly Developed Animal Model of Combined (Mental and Physical) Fatigue. In: Watanabe, Y., Evengård, B., Natelson, B.H., Jason, L.A., Kuratsune, H. (eds) Fatigue Science for Human Health. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73464-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-73464-2_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-73463-5

  • Online ISBN: 978-4-431-73464-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics