The work of T. Kawai on exact WKB analysis

The pioneering work which combines two major fields “microlocal analysis” and “exponential asymptotics”
  • Yoshitsugu Takei


The year 1989 is a turning point in the research activities of T. Kawai.


Singular Perturbation Theory High Order Equation Microlocal Analysis Isomonodromic Deformation Steep Descent Path 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BW]
    C.M. Bender and T.T. Wu: Anharmonic oscillator, Phys. Rev., 184(1969), 1231–1260.CrossRefMathSciNetGoogle Scholar
  2. [BNR]
    H.L. Berk, W.M. Nevins and K.V. Roberts: New Stokes’ line in WKB theory, J. Math. Phys., 23(1982), 988–1002.MATHCrossRefMathSciNetGoogle Scholar
  3. [DDP]
    E. Delabaere, H. Dillinger et F. Pham: Résurgence de Voros et périodes des courbes hyperelliptiques, Ann. Inst. Fourier (Grenoble), 43(1993), 163–199.MATHMathSciNetGoogle Scholar
  4. [E]
    J. Ecalle: Cinq applications des fonctions résurgentes, Prépublication d’Orsay 84T62, Univ. Paris-Sud, 1984.Google Scholar
  5. [JMU]
    M. Jimbo, T. Miwa and K. Ueno: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I, Physica D, 2(1981), 306–352.CrossRefMathSciNetGoogle Scholar
  6. [O]
    K. Okamoto: Isomonodromic deformation and Painlevé equations, and the Garnier systems, J. Fac. Sci. Univ. Tokyo, Sect. IA, 33(1986), 575–618.MATHMathSciNetGoogle Scholar
  7. [P]
    F. Pham: Resurgence, quantized canonical transformations, and multi-instanton expansions, Algebraic Analysis, Vol. II, Academic Press, 1988, pp. 699–726.MathSciNetGoogle Scholar
  8. [V]
    A. Voros: The return of the quartic oscillator. The complex WKB method, Ann. Inst. Henri Poincaré, 39(1983), 211–338.MATHMathSciNetGoogle Scholar
  9. [Z]
    J. Zinn-Justin: Instantons in quantum mechanics: Numerical evidence for a conjecture, J. Math. Phys., 25(1984), 549–555.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Yoshitsugu Takei
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityJapan

Personalised recommendations