Skip to main content

A role of virtual turning points and new Stokes curves in Stokes geometry of the quantum Hénon map

  • Chapter
Algebraic Analysis of Differential Equations

Abstract

A role of virtual turning points and new Stokes curves, that have been proposed as entirely new notions appearing only in higher-order differential equations, is studied in the Stokes geometry of the quantum Hénon map. Characteristics of the Stokes geometry in multi-steps are particularly focused on and generic bifurcation patterns of the Stokes geometry are listed up, which is intended to develop a “pruning theory of Stokes geometry”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, T., Kawai, T., Kokie, T., Sasaki, S., Shudo, A., Takei, T.: A background story and some know-how of virtual turning points. RIMS Kôkyûroku, 1424, 52–63 (2005)

    Google Scholar 

  2. Aoki, T., Kawai, T., Sasaki, S., Shudo, A., Takei, T.: Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations. J. Phys. A, 38, 3317–3336 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aoki, T., Kawai, T., Takei, T.: New turning points in the exact WKB analysis for higher-order ordinary differential equations. In: Boutet de Monvel, L. (ed) Analyse algébrique des perturbationssingulières. I. Hermann, pp. 69–84 (1994)

    Google Scholar 

  4. Aoki, T., Kawai, T., Takei, T.: On the exact WKB analysis for the third order ordinary differential equations with a large parameter. Asian J. Math., 2, 625–640 (1998)

    MATH  MathSciNet  Google Scholar 

  5. Aoki, T., Kawai, T., Takei, T.: On the exact steepest descent method. J. Math. Phys., 42, 3691–3713 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aoki, T., Kawai, T., Takei, T.: Exact WKB analysis of nonadiabatic transition probabilities for three levels. J. Phys. A, 35, 2401–2430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berk, H.L., Nevins, M.W., Roberts, K.V.: J. Math. Phys., 23, 988–1002(1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bedford, E., Smillie, J.: Real polynomial diffeomorphism with maximal entropy: Tangencies. Ann. Math., 160, 1–26 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bender, C.M., Wu, T.T.: Anharmonic oscillator, Phys. Rev., 184, 1231–1260 (1969)

    Article  MathSciNet  Google Scholar 

  10. Cvitanović, P., Gunaratne, G,. Procaccia I.: Topological and metric properties of Hénon type strange attractors. Phys. Rev. A, 38, 1503–20 (1988)

    Article  MathSciNet  Google Scholar 

  11. Delabaere, E., Dillinger, H., Pham., P: Eact semi-classical expansions for on dimensional quantum oscillators. J. Math. Phys., 38, 6166–6184 (1997)

    Article  MathSciNet  Google Scholar 

  12. Dullin, H.R., Meiss, J.D.: Generalized Hénon maps: the cubic diffeomorphisms of the plane. Physica D, 143, 262–289 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Devaney, R., Nitecki, Z.: Shift automorphisms in the Héon mapping. Commun. Math. Phys., 67, 137–146 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Friedland, S., Milnor J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theor. Dyn. Sys., 9, 67–99 (1989)

    MATH  MathSciNet  Google Scholar 

  15. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)

    MATH  Google Scholar 

  16. Howls, C.J., Langman, P.J., Olde Daalhuis, A.B.: On the higher-order Stokes phenomeon. Proc. R. Soc. London, 460, 2285–2303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Honda, N.: Toward the complete description of the Stokes geometry. In press.

    Google Scholar 

  18. Howls, C.J.: Proc. R. Soc. London, 453, 2271–2294 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys., 50, 69–77 (1976)

    Article  MATH  Google Scholar 

  20. Giannoni, M.-J., Voros, A., Zinn-Justin, J. (ed): Chaos and quamtum Physics. Les Houches Summer School, Session LII, North-Holland, Amsterdam (1989).

    Google Scholar 

  21. Milnor, J., Thurston, W.,: On iterated maps of the interval. In: Dynamical Systems (College Park, MD, 1986–7). Springer, Berlin, pp. 465–563 (1988)

    Chapter  Google Scholar 

  22. Shudo, A.: A recipe for finding Stokes geomtry in the quantized Hénon map. RIMS Kôkyûroku, 1433, 110–119 (2005)

    Google Scholar 

  23. Shudo, A.: Stokes geometry for the quantized Hénon map. RIMS Kôkyûroku, 1424, 184–199 (2005)

    Google Scholar 

  24. Shudo, A.: Stokes geometry for the quantized Hénon map in the horseshoe regime. RIMS Kôkyûroku, 1431, 107–115 (2005)

    Google Scholar 

  25. Shudo, A., Ikeda, K.S.: Complex Classical Trrajectories and Chaotic Tunneling. Phys. Rev. Lett., 74, 682–685 (1995)

    Article  Google Scholar 

  26. Shudo, A., Ikeda, K.S.: Stokes Phenomenon in Chaotic Systems: Pruning Trees of Complex Paths with Principle of Exponential Dominance. Phys. Rev. Lett., 76, 4151–5154 (1997)

    Article  Google Scholar 

  27. Shudo, A., Ikeda, K.S.: to be submitted.

    Google Scholar 

  28. Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations. In: Lecture Notes in Math., 287, 265–529 (1973)

    MathSciNet  Google Scholar 

  29. Voros, A.: The return of the quartic oscillator: The complex WKB method. Poincaré Phys. Théor., 39, 211–338 (1983)

    MATH  MathSciNet  Google Scholar 

  30. Zinn-Justin, J.: Instantons in quantum mechanics: numerical evidence for a conjecture. J. Math. Phys., 25, 549–555 (1984).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Shudo, A. (2008). A role of virtual turning points and new Stokes curves in Stokes geometry of the quantum Hénon map. In: Aoki, T., Majima, H., Takei, Y., Tose, N. (eds) Algebraic Analysis of Differential Equations. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73240-2_21

Download citation

Publish with us

Policies and ethics