A role of virtual turning points and new Stokes curves in Stokes geometry of the quantum Hénon map

  • Akira Shudo


A role of virtual turning points and new Stokes curves, that have been proposed as entirely new notions appearing only in higher-order differential equations, is studied in the Stokes geometry of the quantum Hénon map. Characteristics of the Stokes geometry in multi-steps are particularly focused on and generic bifurcation patterns of the Stokes geometry are listed up, which is intended to develop a “pruning theory of Stokes geometry”.


Chaotic System Lagrangian Manifold Classical Orbit Folding Point Stokes Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AKSST]
    Aoki, T., Kawai, T., Kokie, T., Sasaki, S., Shudo, A., Takei, T.: A background story and some know-how of virtual turning points. RIMS Kôkyûroku, 1424, 52–63 (2005)Google Scholar
  2. [AKSST]
    Aoki, T., Kawai, T., Sasaki, S., Shudo, A., Takei, T.: Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations. J. Phys. A, 38, 3317–3336 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. [AKT1]
    Aoki, T., Kawai, T., Takei, T.: New turning points in the exact WKB analysis for higher-order ordinary differential equations. In: Boutet de Monvel, L. (ed) Analyse algébrique des perturbationssingulières. I. Hermann, pp. 69–84 (1994)Google Scholar
  4. [AKT2]
    Aoki, T., Kawai, T., Takei, T.: On the exact WKB analysis for the third order ordinary differential equations with a large parameter. Asian J. Math., 2, 625–640 (1998)MATHMathSciNetGoogle Scholar
  5. [AKT3]
    Aoki, T., Kawai, T., Takei, T.: On the exact steepest descent method. J. Math. Phys., 42, 3691–3713 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. [AKT4]
    Aoki, T., Kawai, T., Takei, T.: Exact WKB analysis of nonadiabatic transition probabilities for three levels. J. Phys. A, 35, 2401–2430 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. [BNR]
    Berk, H.L., Nevins, M.W., Roberts, K.V.: J. Math. Phys., 23, 988–1002(1982)MATHCrossRefMathSciNetGoogle Scholar
  8. [BS]
    Bedford, E., Smillie, J.: Real polynomial diffeomorphism with maximal entropy: Tangencies. Ann. Math., 160, 1–26 (2004)MATHMathSciNetCrossRefGoogle Scholar
  9. [BW]
    Bender, C.M., Wu, T.T.: Anharmonic oscillator, Phys. Rev., 184, 1231–1260 (1969)CrossRefMathSciNetGoogle Scholar
  10. [CGP]
    Cvitanović, P., Gunaratne, G,. Procaccia I.: Topological and metric properties of Hénon type strange attractors. Phys. Rev. A, 38, 1503–20 (1988)CrossRefMathSciNetGoogle Scholar
  11. [DDP]
    Delabaere, E., Dillinger, H., Pham., P: Eact semi-classical expansions for on dimensional quantum oscillators. J. Math. Phys., 38, 6166–6184 (1997)CrossRefMathSciNetGoogle Scholar
  12. [DM]
    Dullin, H.R., Meiss, J.D.: Generalized Hénon maps: the cubic diffeomorphisms of the plane. Physica D, 143, 262–289 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. [DN]
    Devaney, R., Nitecki, Z.: Shift automorphisms in the Héon mapping. Commun. Math. Phys., 67, 137–146 (1979)MATHCrossRefMathSciNetGoogle Scholar
  14. [FM]
    Friedland, S., Milnor J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theor. Dyn. Sys., 9, 67–99 (1989)MATHMathSciNetGoogle Scholar
  15. [Gutz]
    Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)MATHGoogle Scholar
  16. [HLO]
    Howls, C.J., Langman, P.J., Olde Daalhuis, A.B.: On the higher-order Stokes phenomeon. Proc. R. Soc. London, 460, 2285–2303 (2004)MATHCrossRefMathSciNetGoogle Scholar
  17. [Hon]
    Honda, N.: Toward the complete description of the Stokes geometry. In press.Google Scholar
  18. [How]
    Howls, C.J.: Proc. R. Soc. London, 453, 2271–2294 (1997)MATHCrossRefMathSciNetGoogle Scholar
  19. [Hen]
    Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys., 50, 69–77 (1976)MATHCrossRefGoogle Scholar
  20. [Les]
    Giannoni, M.-J., Voros, A., Zinn-Justin, J. (ed): Chaos and quamtum Physics. Les Houches Summer School, Session LII, North-Holland, Amsterdam (1989).Google Scholar
  21. [MT]
    Milnor, J., Thurston, W.,: On iterated maps of the interval. In: Dynamical Systems (College Park, MD, 1986–7). Springer, Berlin, pp. 465–563 (1988)CrossRefGoogle Scholar
  22. [S1]
    Shudo, A.: A recipe for finding Stokes geomtry in the quantized Hénon map. RIMS Kôkyûroku, 1433, 110–119 (2005)Google Scholar
  23. [S2]
    Shudo, A.: Stokes geometry for the quantized Hénon map. RIMS Kôkyûroku, 1424, 184–199 (2005)Google Scholar
  24. [S3]
    Shudo, A.: Stokes geometry for the quantized Hénon map in the horseshoe regime. RIMS Kôkyûroku, 1431, 107–115 (2005)Google Scholar
  25. [SI1]
    Shudo, A., Ikeda, K.S.: Complex Classical Trrajectories and Chaotic Tunneling. Phys. Rev. Lett., 74, 682–685 (1995)CrossRefGoogle Scholar
  26. [SI2]
    Shudo, A., Ikeda, K.S.: Stokes Phenomenon in Chaotic Systems: Pruning Trees of Complex Paths with Principle of Exponential Dominance. Phys. Rev. Lett., 76, 4151–5154 (1997)CrossRefGoogle Scholar
  27. [SI3]
    Shudo, A., Ikeda, K.S.: to be submitted.Google Scholar
  28. [SKK]
    Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations. In: Lecture Notes in Math., 287, 265–529 (1973)MathSciNetGoogle Scholar
  29. [V]
    Voros, A.: The return of the quartic oscillator: The complex WKB method. Poincaré Phys. Théor., 39, 211–338 (1983)MATHMathSciNetGoogle Scholar
  30. [Z]
    Zinn-Justin, J.: Instantons in quantum mechanics: numerical evidence for a conjecture. J. Math. Phys., 25, 549–555 (1984).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Akira Shudo
    • 1
  1. 1.Department of PhysicsTokyo Metropolitan UniversityMinami-Ohsawa, Hachioji, TokyoJapan

Personalised recommendations