Making More Sense of Agent-Based Simulation for Agricultural Policy Analysis

  • Kathrin Happe
  • Konrad Kellermann


In the field of agricultural and resource economics there has recently been a growing interest in using agent-based models (ABM) for policy analysis. ABM possess the capability of simulating complex relationships between many interacting agents and their environment. In agricultural economics, ABM offer possibilities for addressing and explaining observable phenomena such as structural change. Many empirical based agent-based models are highly complex and include a multitude of modelled processes as well as a high degree of detail and parameterisation. This inevitably reduces their tractability, and makes it difficult to follow and understand their functioning and interpret results. Because of this, communicating results of complex agent-based models to policy-makers is a challenging task. For ABM to assist in decision-making, policy makers should develop an understanding of the complex processes and assumptions underlying the simulation models based on the provided given information (such as model documentations, model code). Yet, this is hardly a realistic option given policy makers’ varying disciplinary backgrounds and time restrictions. Obviously, models cannot capture the full complexity of a target system and all relevant processes. Inevitably, we need to make guesses and assumptions about the true nature of the target system. However, we do not know what the response will look like if we for different combinations of input parameters, and how these interact with each other. This is particularly important, if we, for example, want to draw relevant policy conclusions based on an analysis of interactions between policy measures and determinants of structural change.


Equity Capital Latin Hypercube Sampling Land Rent Land Market Managerial Ability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Glauben T, Tietje H, Weiss C (2006) Agriculture on the Move: Exploring Regional Differences in Farm Exit Rates. Review of Regional Research 26:103–118Google Scholar
  2. Happe K, Kellermann K, Balmann A (2006) Agent-based Analysis of Agricultural Policies: an Illustration of the Agricultural Policy Simulator AgriPoliS, its Adaptation and Behavior. Ecology and Society 11(1):49. [online] URL: 11 /iss 1 /art49/ URLGoogle Scholar
  3. Happe K (2004) Agricultural policies and farm structures — agent-based modelling and application to EU-policy reform. IAMO Studies on the Agricultural and Food Sector in Central and Eastern Europe 30, IAMO, Halle (Saale), [online] URL:
  4. Kleijnen JPC, Sanchez SM, Lucas TW, Cioppa TM (2005) A user’s guide to the brave new world of simulation experiments. INFORMS Journal on Computing 17(3):263–289CrossRefGoogle Scholar
  5. Kleijnen JPC, van Groenendaal W (1992) Simulation — a statistical perspective. John Wiley & Sons, New York, ChichesterMATHGoogle Scholar
  6. Law AM, Kelton WD (1991) Simulation modelling and analysis. 2nd edition, McGraw-Hill, New York, St. LouisGoogle Scholar
  7. Matlab (2005) User manual Statistics Toolbox. The MathworksGoogle Scholar
  8. Sanchez SM (2005a) Work smarter, not harder: guidelines for designing simulation experiments. In: Kuhl ME, Steiger NM, Armstrong FB, Joines JA (eds). Proceedings of the 2005 Winter Simulation ConferenceGoogle Scholar
  9. Sanchez SM (2005b) NOLHdesigns spreadsheet. Available online via [accessed 10/06/2006] URLGoogle Scholar
  10. Vonk Noordegraaf A, Nielen M, Kleijnen JPC (2002) Sensitivity analysis by experimental design and metamodeling: case study on simulation in national animal disease control. European Journal of Operational Research 146(3):433–443CrossRefGoogle Scholar
  11. Weiss C (1999) Farm Growth and Survival: Econometric Evidence for Individual Farms in Upper Austria. American Journal of Agricultural Economics 81:13–116CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kathrin Happe
    • 1
  • Konrad Kellermann
    • 1
  1. 1.Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO)Halle (Saale)Germany

Personalised recommendations