Skip to main content

Neural Basis of Saccadic Decision Making in the Human Cortex

  • Chapter
Representation and Brain

Abstract

We summarize a few of the brain imaging studies on cortical control of ocular saccades (including the main eye fields: PEF, FEF, SEF, CEF, pre-SEF, PFEF) and describes recent new findings obtained with intracranial recordings of brain activity in epileptic patients (Stereotaxic EEG). We shall particularly focus on the problem of decision making in saccadic control by describing experiments during which subjects had to decide to make an horizontal saccade to a particular direction in space. Oculomotor execution and decision can be studied only by integrating dynamic component. The SEEG signals clearly reveal the multidimensionality of the ensemble neuronal responses, which consist of event-related potentials (ERPs), induced synchronizations and desynchronizations in distinct frequency bands. Our short study show a specific activation in the high frequencies (very high gamma band: 110–140 Hz) of the PFEF in an oculomotor task when the decision is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amador N, Schlag-Rey M, Schlag J (2004) Primate antisaccade: II. Supplementary eye field neuronal activity predicts correct performance. J Neurophysiol 91:1672–1689

    Article  PubMed  Google Scholar 

  • Andersson F, Joliot M, Perchey G, Petit L (2006) Eye position-dependent activity in the primary visual area as revealed by fMRI. Hum Brain Mapping (early view)

    Google Scholar 

  • Aspell JE, Tanskanen T, Hurlbert AC (2005) Neuromagnetic correlates of visual motion coherence. Eur J Neurosci 22:2937–2945

    Article  PubMed  CAS  Google Scholar 

  • Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23(2):591–596

    Google Scholar 

  • Beauchamp MS, Petit L, Ellmore TM, Ingeholm J, Haxby JV (2001) A parametric fMRI study of overt and covert shifts of visuospatial attention. NeuroImage 14:310–321

    Article  PubMed  CAS  Google Scholar 

  • Berman RA, Colby CL, Genovese CR (1999) Cortical networks subserving pursuit and saccadic eye movements in humans: an fMRI study. Hum Brain Mapping 8:209–225

    Article  CAS  Google Scholar 

  • Berthoz A (2003) La décision. Jacob, Paris

    Google Scholar 

  • Blanke O, Seeck M (2003) Direction of saccadic and smooth eye movements induced by electrical stimulation of the human frontal eye field: effect of orbital position. Exp Brain Res 150:174–183

    PubMed  Google Scholar 

  • Bodis-Wollner I, Von Gizyckia H, Amassiana V, Avitablea M, Maria Z, Hallettb M, Bucherc SF, Hussaina Z, Lallia S, Cracco R (2002) The dynamic effect of saccades in the visual cortex: evidence from fMRI, sTMS and EEG studies. Int Congr Ser 1232:843–851

    Article  Google Scholar 

  • Brown MR, Goltz HC, Vilis T, Ford KA, Everling S (2006) Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials. NeuroImage 33:644–659

    Article  PubMed  Google Scholar 

  • Connolly JD, Goodale MA, Menon RS, Munoz DP (2002) Human fMRI evidence for the neural correlates of preparatory set. Nat Neurosci 5:1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Constantinidis C, Williams GV, Goldman-Rakic PS (2002) A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5:175–180

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M (1998a) Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping systems. Proc Natl Acad Sci U S A 95:831–838

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998b) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Kincade JM, Shulman GL (2002) Neural systems for visual orienting and their relationships to spatial working memory. J Cognit Neurosci 14:508–523

    Article  Google Scholar 

  • Cornelissen FW, Kimmig H, Schira M, Rutschmann RM, Maguire RP, Broerse A, Den Boer JA, Greenlee MW (2002) Event-related fMRI responses in the human frontal eye fields in a randomized pro-and antisaccade task. Exp Brain Res 145:270–274

    Article  PubMed  Google Scholar 

  • Coull JT, Frith CD, Büchel C, Nobre AC (2000) Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia 38:808–819

    Article  PubMed  CAS  Google Scholar 

  • Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis: II. Event-related synchronization in the gamma band. Brain 121:2301–2315

    Article  PubMed  Google Scholar 

  • Curtis CE, D’Esposito M (2006) Selection and maintenance of saccade goals in the human frontal eye fields. J Neurophysiol 95:3923–3927

    Article  PubMed  Google Scholar 

  • DeSouza JF, Menon RS, Everling S (2003) Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI. J Neurophysiol 89:1016–1023

    Article  PubMed  Google Scholar 

  • Duncan J (2001) An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci 2:820–829

    Article  PubMed  CAS  Google Scholar 

  • Funahashi S (2006) Prefrontal cortex and working memory processes. Neuroscience 139:251–261

    Article  PubMed  CAS  Google Scholar 

  • Gaymard B, Rivaud S, Cassarini JF, Dubard T, Rancurel G, Agid Y, Pierrot-Deseilligny C (1998) Effects of anterior cingulate cortex lesions on ocular saccades in humans. Exp Brain Res 120:173–183

    Article  PubMed  CAS  Google Scholar 

  • Gaymard B, Lynch J, Ploner C, Condy C, Rivaud-Pechoux S (2003) The parieto-collicular pathway: anatomical location and contribution to saccade generation. Eur J Neurosci 17:1518–1526

    Article  PubMed  CAS  Google Scholar 

  • Grosbras MH, Lobel E, LeBihan D, Berthoz A, Leonards U (1998) Evidence for a pre-SEF in humans. NeuroImage 7:988

    Google Scholar 

  • Grosbras MH, Lobel E, Van de Moortele PF, Le Bihan D, Berthoz A (1999) An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging. Cereb Cortex 9:705–711

    Article  PubMed  CAS  Google Scholar 

  • Grosbras MH, Leonards U, Lobel E, Poline JB, LeBihan D, Berthoz A (2001) Human cortical networks for new and familiar sequences of saccades. Cereb Cortex 11:936–945

    Article  PubMed  CAS  Google Scholar 

  • Grosbras MH, Paus T (2002) Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J Cognit Neurosci 14:1109–1120

    Article  Google Scholar 

  • Grosbras MH, Laird A, Paus T (2005) Cortical regions involved in eye movements, shifts of attention, and gaze perception. Hum Brain Mapping 25:140–154

    Article  Google Scholar 

  • Guitton D, Buchtel HA, Douglas RM (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58:455–472

    Article  PubMed  CAS  Google Scholar 

  • Heide W, Kompf D (1998) Combined deficits of saccades and visuo-spatial orientation after cortical lesions. Exp Brain Res 123:164–171

    Article  PubMed  CAS  Google Scholar 

  • Heide W, Binkofski F, Seitz RJ, Posse S, Nitschke MF, Freund HJ, Kompf D (2001) Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study. Eur J Neurosci 13:1177–1189

    Article  PubMed  CAS  Google Scholar 

  • Herter TM, Guitton D (2004) Accurate bidirectional saccade control by a single hemicortex. Brain 127:1393–1402

    Article  PubMed  Google Scholar 

  • Husain M, Mannan S, Hodgson T, Wojciulik E, Driver J, Kennard C (2001) Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. Brain 124:941–952

    Article  PubMed  CAS  Google Scholar 

  • Isoda M, Tanji J (2003) Contrasting neuronal activity in the supplementary and frontal eye fields during temporal organization of multiple saccades. J Neurophysiol 90:3054–3065

    Article  PubMed  Google Scholar 

  • Kahane P, Minotti L, Hoffmann D, Lachaux J, Ryvlin P (2004) Invasive EEG in the definition of the seizure onset zone: depth electrodes. In: Handbook of clinical neurophysiology. Pre-surgical assessment of the epilepsies with clinical neurophysiology and functional neuroimaging. In: Rosenow F, Lüders HO (Eds) Elsevier Science

    Google Scholar 

  • Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Knutson KM, Wood JN, Grafman J (2004) Brain activation in processing temporal sequence: an fMRI study. NeuroImage 23:1299–1307

    Article  PubMed  Google Scholar 

  • Lachaux JP, Hoffmann D, Minotti L, Berthoz A, Kahane P (2006) Intracerebral dynamics of saccade generation in the human frontal eye field and supplementary eye field. NeuroImage 30:1302–1312

    Article  PubMed  Google Scholar 

  • Lang W, Petit L, Hollinger P, Pietrzyk U, Tzourio N, Mazoyer B, Berthoz A (1994) A positron emission tomography study of oculomotor imagery. NeuroReport 5:921–924

    Article  PubMed  CAS  Google Scholar 

  • Law I, Svarer C, Rostrup E, Paulson OB (1998) Parieto-occipital cortex activation during self-generated eye movements in the dark. Brain 121:2189–2200

    Article  PubMed  Google Scholar 

  • Lepsien J, Pollmann S (2002) Covert reorienting and inhibition of return: an event-related fMRI study. J Cognit Neurosci 14:127–144

    Article  Google Scholar 

  • Lobel E, Berthoz A, Leroy-Willig A, Le Bihan D (1996) fMRI study of voluntary saccadic eye movements in humans. NeuroImage 3:396

    Article  Google Scholar 

  • Lobel E, Kahane P, Leonards U (2001) Localization of the human frontal eye fields: anatomical and functional findings from functional magnetic resonance imaging and intracerebral electrical stimulation. J Neurosurg 95:804–815

    PubMed  CAS  Google Scholar 

  • Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338:114–140

    Article  PubMed  CAS  Google Scholar 

  • Milea D, Lehericy S, Rivaud-Pechoux S, Duffau H, Lobel E, Capelle L, Marsault C, Berthoz A, Pierrot-Deseilligny C (2003) Antisaccade deficit after anterior cingulate cortex resection. NeuroReport 14:283–287

    Article  PubMed  CAS  Google Scholar 

  • Milea D, Lobel E, Lehericy S, Pierrot-Deseilligny C, Berthoz A (2005) Cortical mechanisms of saccade generation from execution to decision. Annuals of the New York Academy of Sciences 1039:232–238

    Article  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annual Review of Neuroscience 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Miller BT, D’Esposito M (2005) Searching for “the top” in top-down control. Neuron 48:535–538

    Article  PubMed  CAS  Google Scholar 

  • Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228

    Article  PubMed  CAS  Google Scholar 

  • Nobre AC, Gitelman DR, Dias EC, Mesulam MM (2000) Covert visual spatial orienting and saccades: overlapping neural systems. NeuroImage 11:210–216

    Article  PubMed  CAS  Google Scholar 

  • O’Driscoll GA, Wolff AL, Benkelfat C, Florencio PS, Lal S, Evans AC (2000) Functional neuroanatomy of smooth pursuit and predictive saccades. NeuroReport 11:1335–1340

    Article  PubMed  Google Scholar 

  • Olk B, Chang E, Kingstone A, Ro T (2006) Modulation of antisaccades by transcranial magnetic stimulation of the human frontal eye field. Cereb Cortex 16:76–82

    Article  PubMed  Google Scholar 

  • Ozyurt J, Rutschmannb RM, Greenleeb MW (2006) Cortical activation during memory-guided saccades. NeuroReport 17:1005–1009

    Article  PubMed  Google Scholar 

  • Parton A, Parashkev N, Hodgson TL, Mort D, Thomas D, Ordidge R, Morgan PS, Jackson S, Rees G, Husain M (2006) Role of the human supplementary eye field in the control of saccadic eye movements. Neuropsychologia 45:997–1008

    Article  PubMed  Google Scholar 

  • Paus T (1996) Location and function of the human frontal eye field: a selective review. Neuropsychologia 34:475–483

    Article  PubMed  CAS  Google Scholar 

  • Perry RJ, Zeki S (2000) The neurology of saccades and cover shifts in spatial attention: an event-related fMRI study. Brain 123:2273–2288

    Article  PubMed  Google Scholar 

  • Petit L, Tzourio N, Orssaud C, Pietrzyk U, Berthoz A, Mazoyer B (1995) Functional neuroanatomy of the human visual fixation system. Eur J Neurosci 7:169–174

    Article  PubMed  CAS  Google Scholar 

  • Petit L, Orssaud C, Tzourio N, Crivello F, Berthoz A, Mazoyer B (1996) Functional anatomy of a prelearned sequence of horizontal saccades in humans. J Neurosci 16:3714–3726

    PubMed  CAS  Google Scholar 

  • Petit L, Clark VP, Ingeholm J, Haxby JV (1997) Dissociation of saccade-related and pursuit-related activation in the human frontal eye fields as revealed by fMRI. J Neurophysiol 77:3386–3390

    PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny C, Ploner CJ, Muri RM, Gaymard B, Rivaud-Pechoux S (2002) Effects of cortical lesions on saccadic eye movements in humans. Ann N Y Acad Sci 956:216–229

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Muri RM, Ploner CJ, Gaymard B, Demeret S, Rivaud-Pechoux S (2003) Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. Brain 126:1460–1473

    Article  PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny C, Milea D, Muri RM (2004) Eye movement control by the cerebral cortex. Curr Opin Neurobiol 17:17–25

    Article  Google Scholar 

  • Pierrot-Deseilligny C, Muri RM, Nyffeler T, Milea D (2005) The role of the human dorsolateral prefrontal cortex in ocular motor behaviour. Ann N Y Acad Sci 1039:239–251

    Article  PubMed  Google Scholar 

  • Ploner CJ, Gaymard BM, Rivaud-Pechoux S, Baulac M, Clemenceau S, Samson SF, Pierrot-Deseilligny C (2001) Lesions affecting the parahippocampal cortex yield spatial memory deficits in humans. Cereb Cortex 10:1211–1216

    Article  Google Scholar 

  • Postle BR, Berger JS, Taich AM, D’Esposito M (2000) Activity in human frontal cortex associated with spatial working memory and saccadic behavior. J Cognit Neurosci 12:2–14

    Article  Google Scholar 

  • Rizzolatti G, Riggio L, Dascola I, Umilta C (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25:31–40

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    Article  PubMed  CAS  Google Scholar 

  • Rosano C, Krisky CM, Welling JS, Eddy WF, Luna B, Thulborn KR, Sweeney JA (2002) Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. Cereb Cortex 12:107–115

    Article  PubMed  Google Scholar 

  • Sakamoto A, Luders H, Burgess R (1991) Intracranial recordings of movement-related potentials to voluntary saccades. J Clin Neurophysiol 8:223–233

    Article  PubMed  CAS  Google Scholar 

  • Schall JD (2001) Neural basis of deciding, choosing and acting. Nat Rev Neurosci 2:33–42

    Article  PubMed  CAS  Google Scholar 

  • Schall JD (2004) On the role of frontal eye field in guiding attention and saccades. Vision Res 44:1453–1467

    Article  PubMed  Google Scholar 

  • Simon JD, Mangin JF, Cohen L, Le Bihan D, Dehaene S (2002) On the role of frontal eye field in guiding attention and saccades. Neuron 33:475–487

    Article  PubMed  CAS  Google Scholar 

  • Simon JD, Kherif F, Flandin G, Poline JB, Rivière D, Mangin JF, Le Bihan D, Dehaene S (2004) Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. NeuroImage 23:1192–1202

    Article  PubMed  Google Scholar 

  • Talairach J, Toumoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. Thieme Medical Publishers. New York

    Google Scholar 

  • Tobler PN, Muri RM (2002) Role of human frontal and supplementary eye fields in double step saccades. NeuroReport 13:253–255

    Article  PubMed  Google Scholar 

  • Yamamoto J, Ikeda A, Satow T, Matsuhashi M, Baba K, Yamane F, Miyamoto S, Mihara T, Hori T, Taki W, Hashimoto N, Shibasaki H (2004) Human eye fields in the frontal lobe as studied by epicortical recording of movement-related cortical potentials. Brain 127:873–887

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Freyermuth, S., Lachaux, JP., Kahane, P., Berthoz, A. (2007). Neural Basis of Saccadic Decision Making in the Human Cortex. In: Funahashi, S. (eds) Representation and Brain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73021-7_8

Download citation

Publish with us

Policies and ethics