Representation of Bodily Self in the Multimodal Parieto-Premotor Network

  • Akira Murata
  • Hiroaki Ishida


In this paper, we discussed multimodal bodily self-represention in the brain. We mainly emphasized that the parieto-premotor network for sensory-guided motor control also contributes to corporeal awareness. The network integrates dynamic multimodal information about the body. Some of multisensory areas in this network showed visual RFs in the pripersonal space and somatosensory RFs on the congruent body parts encoding body parts centered frame of reference. This is a basis of bodily self-recognition. Sense of ownership and sense of agency are two main components of the bodily self. Multisensory parietal areas VIP, PEa, and PFG/PF have connections with each other and also premotor cortex. We suggest that the streams to the parietal areas VIP, PFG, and PEa from the premotor cortex form node processing for sense of ownership and sense of agency. The parieto-premotor network may be involved in the social cognitive process, as suggested by mirror neuron. We propose that distinction of bodily self and others in the parieto-premotor network is a fundamental process of the social cognitive function.


Parietal Cortex Mirror Neuron Premotor Cortex Efference Copy Inferior Parietal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004) Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nat Neurosci 7:542–548PubMedCrossRefGoogle Scholar
  2. Avillac M, Deneve S, Olivier E, Pouget A, Duhamel JR (2005) Reference frames for representing visual and tactile locations in parietal cortex. Nat Neurosci 8:941–949PubMedGoogle Scholar
  3. Battaglia-Mayer A, Caminiti R, Lacquaniti F, Zago M (2003) Multiple levels of representation of reaching in the parieto-frontal network. Cereb Cortex 13:1009–1022PubMedCrossRefGoogle Scholar
  4. Berlucchi G, Aglioti S (1997) The body in the brain: neural bases of corporeal awareness. Trends Neurosci 20:560–564PubMedCrossRefGoogle Scholar
  5. Beschin N, Robertson IH (1997) Personal versus extrapersonal neglect: a group study of their dissociation using a reliable clinical test. Cortex 33:379–384PubMedCrossRefGoogle Scholar
  6. Blakemore SJ, Frith CD, Wolpert DM (1999) Spatio-temporal prediction modulates the perception of self-produced stimuli. J Cognit Neurosci 11:551–559CrossRefGoogle Scholar
  7. Blakemore SJ, Smith J, Steel R, Johnstone CE, Frith CD (2000) The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for a breakdown in self-monitoring. Psychol Med 30:1131–1139PubMedCrossRefGoogle Scholar
  8. Blakemore SJ, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12:1879–1884PubMedCrossRefGoogle Scholar
  9. Blakemore SJ, Wolpert DM, Frith CD (2002) Abnormalities in the awareness of action. Trends Cognit Sci 6:237–242CrossRefGoogle Scholar
  10. Blakemore SJ, Oakley DA, Frith CD (2003) Delusions of alien control in the normal brain. Neuropsychologia 41:1058–1067PubMedCrossRefGoogle Scholar
  11. Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature (Lond) 391:756PubMedCrossRefGoogle Scholar
  12. Breveglieri R, Kutz DF, Fattori P, Gamberini M, Galletti C (2002) Somatosensory cells in the parieto-occipital area V6A of the macaque. Neuroreport 13:2113–2116PubMedCrossRefGoogle Scholar
  13. Caminiti R, Ferraina S, Johnson PB (1996) The sources of visual information to the primate frontal lobe: a novel role for the superior parietal lobule. Cereb Cortex 6:319–328PubMedCrossRefGoogle Scholar
  14. Claxton G (1975) Why can’t we tickle ourselves? Percept Mot Skills 41:335–338PubMedGoogle Scholar
  15. Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol 69:902–914PubMedGoogle Scholar
  16. Colby CL (1998) Action-oriented spatial reference frames in cortex. Neuron 20:15–24PubMedCrossRefGoogle Scholar
  17. Cooke DF, Taylor CS, Moore T, Graziano MS (2003) Complex movements evoked by microstimulation of the ventral intraparietal area. Proc Natl Acad Sci USA 100:6163–6168PubMedCrossRefGoogle Scholar
  18. Critchley M (1979) Corporeal awareness. In: The divine banquet of the brain. Raven Press, New YorkGoogle Scholar
  19. Danckert J, Ferber S (2006) Revisiting unilateral neglect. Neuropsychologia 44:987–1006PubMedCrossRefGoogle Scholar
  20. Daprati E, Franck N, Georgieff N, Proust J, Pacherie E, Dalery J, Jeannerod M (1997) Looking for the agent: an investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition 65:71–86PubMedCrossRefGoogle Scholar
  21. Decety J, Grezes J (2006) The power of simulation: imagining one’s own and other’s behavior. Brain Res 1079:4–14PubMedCrossRefGoogle Scholar
  22. Decety J, Chaminade T, Grezes J, Meltzoff AN (2002) A PET exploration of the neural mechanisms involved in reciprocal imitation. Neuroimage 15:265–272PubMedCrossRefGoogle Scholar
  23. Ehrsson HH, Spence C, Passingham RE (2004) That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305:875–877PubMedCrossRefGoogle Scholar
  24. Ehrsson HH, Holmes NP, Passingham RE (2005) Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J Neurosci 25:10564–10573PubMedCrossRefGoogle Scholar
  25. Fadiga L, Fogassi L, Gallese V, Rizzolatti G (2000) Visuomotor neurons: ambiguity of the discharge or ‘motor’ perception? Int J Psychophysiol 35:165–177PubMedCrossRefGoogle Scholar
  26. Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M (2003) Modulating the experience of agency: a positron emission tomography study. Neuroimage 18:324–333PubMedCrossRefGoogle Scholar
  27. Farrer C, Franck N, Frith CD, Decety J, Georgieff N, d’Amato T, Jeannerod M (2004) Neural correlates of action attribution in schizophrenia. Psychiatry Res 131:31–44PubMedCrossRefGoogle Scholar
  28. Fattori P, Breveglieri R, Amoroso K, Galletti C (2004) Evidence for both reaching and grasping activity in the medial parieto-occipital cortex of the macaque. Eur J Neurosci 20:2457–2466PubMedCrossRefGoogle Scholar
  29. Fogassi L, Gallese V, Fadiga L, Luppino G, Matelli M, Rizzolatti G (1996) Coding of peripersonal space in inferior premotor cortex (area F4). J Neurophysiol 76:141–157PubMedGoogle Scholar
  30. Fogassi L, Raos V, Franchi G, Gallese V, Luppino G, Matelli M (1999) Visual responses in the dorsal premotor area F2 of the macaque monkey. Exp Brain Res 128:194–199PubMedCrossRefGoogle Scholar
  31. Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667PubMedCrossRefGoogle Scholar
  32. Frith C (2005) The self in action: lessons from delusions of control. Conscious Cognit 14:752–770CrossRefGoogle Scholar
  33. Gallagher S (2000) Philosophical conceptions of the self: implications for cognitive science. Trends Cognit Sci 4:14CrossRefGoogle Scholar
  34. Gallese V, Goldman A (1998) Mirror neurons and the simulation theory of mind reading. Trends Cognit Sci 12:493–501CrossRefGoogle Scholar
  35. Gallese V, Fogassi L, Fadiga L, Rizzolatti G (2000) Action representation and the inferior parietal lobule. In: Prinz W, Hommel B (eds) Attention and performance, vol XIX. Common mechanisms in perception and action. Oxford University Press, Oxford, pp 334–355Google Scholar
  36. Gallese V (2003) The roots of empathy: the shared manifold hypothesis and the neural basis of intersubjectivity. Psychopathology 36:171–180PubMedCrossRefGoogle Scholar
  37. Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170PubMedCrossRefGoogle Scholar
  38. Gentilucci M, Scandolara C, Pigarev IN, Rizzolatti G (1983) Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position. Exp Brain Res 50:464–468PubMedCrossRefGoogle Scholar
  39. Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1988) Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp Brain Res 71:475–490PubMedCrossRefGoogle Scholar
  40. Gibson JJ (1962) Observations on active touch. Psychol Rev 69:477–491PubMedCrossRefGoogle Scholar
  41. Graziano MS, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266:1054–1057PubMedCrossRefGoogle Scholar
  42. Graziano MS, Cooke DF, Taylor CS (2000) Coding the location of the arm by sight. Science 290:1782–1786.PubMedCrossRefGoogle Scholar
  43. Graziano MS, Cooke DF (2006) Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia 44:845–859PubMedCrossRefGoogle Scholar
  44. Gregoriou GG, Borra E, Matelli M, Luppino G (2006) Architectonic organization of the inferior parietal convexity of the macaque monkey. J Comp Neurol 496:422–451PubMedCrossRefGoogle Scholar
  45. Grezes J, Fonlupt P, Bertenthal B, Delon-Martin C, Segebarth C, Decety J (2001) Does perception of biological motion rely on specific brain regions? Neuroimage 13:775–785PubMedCrossRefGoogle Scholar
  46. Holmes NP, Spence C (2004) The body schema and the multisensory representation(s) of peripersonal space. Cognit Process 5:94–105CrossRefGoogle Scholar
  47. Hoshi E, Tanji J (2000) Integration of target and body-part information in the premotor cortex when planning action. Nature (Lond) 408:466–470PubMedCrossRefGoogle Scholar
  48. Husain M, Mattingley JB, Rorden C, Kennard C, Driver J (2000) Distinguishing sensory and motor biases in parietal and frontal neglect. Brain 123(pt 8):1643–1659PubMedCrossRefGoogle Scholar
  49. Hyvarinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206:287–303PubMedCrossRefGoogle Scholar
  50. Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7:2325–2330PubMedCrossRefGoogle Scholar
  51. Iriki A, Tanaka M, Obayashi S, Iwamura Y (2001) Self-images in the video monitor coded by monkey intraparietal neurons. Neurosci Res 40:163–173PubMedCrossRefGoogle Scholar
  52. Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320PubMedCrossRefGoogle Scholar
  53. Jeannerod M (2003) The mechanism of self-recognition in humans. Behav Brain Res 142:1–15PubMedCrossRefGoogle Scholar
  54. Kakei S, Hoffman DS, Strick PL (2001) Direction of action is represented in the ventral premotor cortex. Nat Neurosci 4:1020–1025PubMedCrossRefGoogle Scholar
  55. Kalaska JF, Caminiti R, Georgopoulos AP (1983) Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp Brain Res 51:247–260PubMedCrossRefGoogle Scholar
  56. Kamakura N, Matsuo M, Ishii H, Mitsuboshi F, Miura Y (1980) Patterns of static prehension in normal hands. Am J Occup Ther 34:437–445PubMedGoogle Scholar
  57. Kennett S, Eimer M, Spence C, Driver J (2001) Tactile-visual links in exogenous spatial attention under different postures: convergent evidence from psychophysics and ERPs. J Cognit Neurosci 13:462–478CrossRefGoogle Scholar
  58. Keysers C, Perrett DI (2004) Demystifying social cognition: a Hebbian perspective. Trends Cognit Sci 8:501–507CrossRefGoogle Scholar
  59. Leinonen L, Hyvarinen J, Nyman G, Linnankoski I (1979) I. Functional properties of neurons in lateral part of associative area 7 in awake monkeys. Exp Brain Res 34:299–320PubMedGoogle Scholar
  60. Leube DT, Knoblich G, Erb M, Grodd W, Bartels M, Kircher TT (2003) The neural correlates of perceiving one’s own movements. Neuroimage 20:2084–2090PubMedCrossRefGoogle Scholar
  61. Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112–137PubMedCrossRefGoogle Scholar
  62. Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128:181–187PubMedCrossRefGoogle Scholar
  63. MacDonald PA, Paus T (2003) The role of parietal cortex in awareness of self-generated movements: a transcranial magnetic stimulation study. Cereb Cortex 13:962–967PubMedCrossRefGoogle Scholar
  64. Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cognit Sci 8:79–86CrossRefGoogle Scholar
  65. Maravita A, Spence C, Driver J (2003) Multisensory integration and the body schema: close to hand and within reach. Curr Biol 13:R531–R539PubMedCrossRefGoogle Scholar
  66. Meador KJ, Loring DW, Feinberg TE, Lee GP, Nichols ME (2000) Anosognosia and asomatognosia during intracarotid amobarbital inactivation. Neurology 55:816–820PubMedGoogle Scholar
  67. Miyazaki M, Hiraki K (2006) Delayed intermodal contingency affects young children’s recognition of their current self. Child Dev 77:736–750PubMedCrossRefGoogle Scholar
  68. Murata A (2002) Hand movement control and dynamic property of body image. In: The 25th annual meeting of the Japan Neuroscience Society, Tokyo. Supplement 26:S7Google Scholar
  69. Murata A (2005) Visual feedback control during self generated action by parietal mirror neurons. In: JJP, 82nd annual meeting of the Physiological Society of Japan, vol 55(suppl). The Physiological Society, Maebashi, p 432Google Scholar
  70. Murata A, Gallese V, Kaseda M, Sakata H (1996) Parietal neurons related to memory-guided hand manipulation. J Neurophysiol 75:2180–2186PubMedGoogle Scholar
  71. Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78:2226–2230PubMedGoogle Scholar
  72. Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601PubMedGoogle Scholar
  73. Mushiake H, Tanatsugu Y, Tanji J (1997) Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze. J Neurophysiol 78:567–571PubMedGoogle Scholar
  74. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain: a meta-analysis of imaging studies on the self. Neuroimage 31:440–457PubMedCrossRefGoogle Scholar
  75. Obayashi S, Tanaka M, Iriki A (2000) Subjective image of invisible hand coded by monkey intraparietal neurons. Neuroreport 11:3499–3505PubMedCrossRefGoogle Scholar
  76. Oztop E, Kawato M, Arbib M (2006) Mirror neurons and imitation: a computationally guided review. Neural Networks (in press)Google Scholar
  77. Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–210PubMedCrossRefGoogle Scholar
  78. Pia L, Neppi-Modona M, Ricci R, Berti A (2004) The anatomy of anosognosia for hemiplegia: a meta-analysis. Cortex 40:367–377PubMedCrossRefGoogle Scholar
  79. Press C, Taylor-Clarke M, Kennett S, Haggard P (2004) Visual enhancement of touch in spatial body representation. Exp Brain Res 154:238–245PubMedCrossRefGoogle Scholar
  80. Puce A, Perrett D (2003) Electrophysiology and brain imaging of biological motion. Philos Trans R Soc Lond B Biol Sci 358:435–445PubMedCrossRefGoogle Scholar
  81. Ramachandran VS, Rogers-Ramachandran D (2000) Phantom limbs and neural plasticity. Arch Neurol 57:317–320PubMedCrossRefGoogle Scholar
  82. Raos V, Umilta MA, Murata A, Fogassi L, Gallese V (2006) Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol 95:709–729PubMedCrossRefGoogle Scholar
  83. Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194PubMedCrossRefGoogle Scholar
  84. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192PubMedCrossRefGoogle Scholar
  85. Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901PubMedCrossRefGoogle Scholar
  86. Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157PubMedCrossRefGoogle Scholar
  87. Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res 71:491–507PubMedCrossRefGoogle Scholar
  88. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670.PubMedCrossRefGoogle Scholar
  89. Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16(10):1389–1417PubMedCrossRefGoogle Scholar
  90. Sakata H (1975) Somatic sensory responses of neurons in the parietal association area (area 5) of monkeys. In: Kornhuber H (ed) The somatosensory system. Thieme, Stuttgart, pp 250–261Google Scholar
  91. Sakata H, Taira M (1994) Parietal control of hand action. Curr Opin Neurobiol 4:847–856PubMedCrossRefGoogle Scholar
  92. Sakata H, Takaoka Y, Kawarasaki A, Shibutani H (1973) Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64:85–102PubMedCrossRefGoogle Scholar
  93. Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5:429–438PubMedCrossRefGoogle Scholar
  94. Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The TINS lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357PubMedCrossRefGoogle Scholar
  95. Schwoebel J, Boronat CB, Branch Coslett H (2002) The man who executed “imagined” movements: evidence for dissociable components of the body schema. Brain Cognit 50:1–16CrossRefGoogle Scholar
  96. Seal J, Gross C, Bioulac B (1982) Activity of neurons in area 5 during a simple arm movement in monkeys before and after differentiation of the trained limb. Brain Res 250:229–243PubMedCrossRefGoogle Scholar
  97. Shimada S, Hiraki K, Oda I (2005) The parietal role in the sense of self-ownership with temporal discrepancy between visual and proprioceptive feedbacks. Neuroimage 24:1225–1232PubMedCrossRefGoogle Scholar
  98. Sirigu A, Daprati E, Pradat-Diehl P, Franck N, Jeannerod M (1999) Perception of self-generated movement following left parietal lesion. Brain 122(pt 10):1867–1874PubMedCrossRefGoogle Scholar
  99. Spence SA, Brooks DJ, Hirsch SR, Liddle PF, Meehan J, Grasby PM (1997) A PET study of voluntary movement in schizophrenic patients experiencing passivity phenomena (delusions of alien control). Brain 120(pt 11):1997–2011PubMedCrossRefGoogle Scholar
  100. Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489PubMedCrossRefGoogle Scholar
  101. Taira M, Mine S, Georgopoulos AP, Murata A, Sakata H (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 83:29–36PubMedCrossRefGoogle Scholar
  102. Taira M, Tsutsui KI, Jiang M, Yara K, Sakata H (2000) Parietal neurons represent surface orientation from the gradient of binocular disparity. J Neurophysiol 83:3140–3146PubMedGoogle Scholar
  103. Tanana K, Obayashi S, Yokoshi H, Hihara S, Kumashiro M, Iwamura Y (2004) Intraparietal bimodal neurons delineating extrinsic space through intrinsic actions. Psychologia 47:63–78CrossRefGoogle Scholar
  104. Tanne-Gariepy J, Rouiller EM, Boussaoud D (2002) Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways. Exp Brain Res 145:91–103.PubMedCrossRefGoogle Scholar
  105. Tipper SP, Phillips N, Dancer C, Lloyd D, Howard LA, McGlone F (2001) Vision influences tactile perception at body sites that cannot be viewed directly. Exp Brain Res 139:160–167PubMedCrossRefGoogle Scholar
  106. Tsakiris M, Haggard P (2005) Experimenting with the action self. Cognit Neuropsychol 22:287–407Google Scholar
  107. Tsakiris M, Haggard P, Franck N, Mainy N, Sirigu A (2005) A specific role for efferent information in self-recognition. Cognition 96:215–231PubMedCrossRefGoogle Scholar
  108. Tsutsui K, Jiang M, Yara K, Sakata H, Taira M (2001) Integration of perspective and disparity cues in surface-orientation-selective neurons of area CIP. J Neurophysiol 86:2856–2867PubMedGoogle Scholar
  109. Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511PubMedGoogle Scholar
  110. Uka T, Tanaka H, Yoshiyama K, Kato M, Fujita I (2000) Disparity selectivity of neurons in monkey inferior temporal cortex. J Neurophysiol 84:120–132PubMedGoogle Scholar
  111. van den Bos E, Jeannerod M (2002) Sense of body and sense of action both contribute to self-recognition. Cognition 85:177–187PubMedCrossRefGoogle Scholar
  112. von Holst E (1953) Relation between the central nervous system and peripheral. J Anim Behav 2:84–94Google Scholar
  113. Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42PubMedCrossRefGoogle Scholar
  114. Wolpert DM, Goodbody SJ, Husain M (1998) Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1:529–533PubMedCrossRefGoogle Scholar
  115. Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358:593–602PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Akira Murata
    • 1
  • Hiroaki Ishida
    • 1
  1. 1.Department of PhysiologyKinki University School of MedicineOsaka-sayamaJapan

Personalised recommendations