Action Representation in the Cerebral Cortex and the Cognitive Functions of the Motor System

  • Leonardo Fogassi


Neuroanatomical and functional data of the two last decades indicate that action and perception are strictly linked, this link occurring through several reciprocal parieto-premotor circuits. In these circuits the representation of the action goal at the single neuron level plays a major role, because it constitutes the internal knowledge on which the external word (such as space, object, biological stimuli) is matched. The mirror neuron system, that is the neural system matching action observation with action execution, is an example of a neural mechanism through which we can recognize and interpret actions made by others by using our internal motor repertoire.

In this article several types of motor cognitive functions will be examined, with a particular emphasis on those underpinned by the mirror neuron system. After a description of the main properties of mirror neurons and of the areas involved in the mirror neuron system in both monkeys and humans, evidence will be reviewed showing the main involvement of this system in action and intention understanding and, in humans, in imitation and some aspects of language.


Motor Cortex Inferior Frontal Gyrus Mirror Neuron Premotor Cortex Inferior Parietal Lobule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbib MA (2005) From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. Behav Brain Sci 28:105–124PubMedGoogle Scholar
  2. Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund H-J (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128:210–213PubMedCrossRefGoogle Scholar
  3. Bonda E, Petrides M, Frey S, Evans AC (1994) Frontal cortex involvement in organized sequences of hand movements: evidence from a positron emission tomography study. Soc Neurosci Abstr 20:152.6Google Scholar
  4. Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 25:151–188PubMedCrossRefGoogle Scholar
  5. Brodmann K (1905) Beitrage zur histologischen lokalisation der grosshirnrinde. III. Mitteilung: die rindenfelder der niedere affen. J Psychol Neurol 4:177–226Google Scholar
  6. Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G and Freund H-J (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404PubMedCrossRefGoogle Scholar
  7. Buccino G, Lui F, Canessa N, Patteri I, Lagravinese G, Benuzzi F, et al. (2004a) Neural circuits involved in the recognition of actions performed by nonconspecifics: an FMRI study. J Cognit Neurosci 16:114–126CrossRefGoogle Scholar
  8. Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund HJ, Rizzolatti G (2004b) Neural circuits underlying imitation of hand actions: an event related fMRI study. Neuron 42:323–334PubMedCrossRefGoogle Scholar
  9. Byrne RW (1999) Imitation without intentionality: using string-parsing to copy the organization of behaviour. Anim Cognit 2:63–72CrossRefGoogle Scholar
  10. Calvert GA, Campbell R (2003) Reading speech from still and moving faces: neural substrates of visible speech. J Cognit Neurosci 15:57–70CrossRefGoogle Scholar
  11. Campbell R, MacSweeney M, Surguladze S, Calvert GA, Mc Guire P, Suckling J, Brammer MJ, David AS (2001) Cortical substrates for the perception of face actions: an fMRI study of the specificity of activation for seen speech and for meaningless lower-face acts (gurning). Brain Res Cognit Brain Res 12:233–243CrossRefGoogle Scholar
  12. Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421PubMedCrossRefGoogle Scholar
  13. Chollet F, Di Piero V, Wise RSJ, Brooks DJ, Dolan RJ, Frackoviak RSJ (1991) The functional anatomy of functional recovery after stroke in humans. Ann Neurol 29:63–71PubMedCrossRefGoogle Scholar
  14. Cochin S, Barthelemy C, Roux S, Martineau J (1999) Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci 11:1839–1842PubMedCrossRefGoogle Scholar
  15. Dapretto M, Davies MS, Pfeifer JH, Scott AA, Sigman M, Bookheimer SY, Iacoboni M (2006) Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci 1:28–30CrossRefGoogle Scholar
  16. Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision versus power-grip tasks: an fMRI study. J Neurophysiol 83:528–536PubMedGoogle Scholar
  17. Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 39:1069–1080Google Scholar
  18. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611PubMedGoogle Scholar
  19. Fadiga L, Craighero L, Buccino G, Rizzolatti G (2002) Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur J Neurosci 15:399–402PubMedCrossRefGoogle Scholar
  20. Ferrari PF, Gallese V, Rizzolatti G, Fogassi L (2003a) Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur J Neurosci 17:1703–1714PubMedCrossRefGoogle Scholar
  21. Ferrari PF, Gregoriou G, Rozzi S, Pagliara S. Rizzolatti G, Fogassi L (2003b) Functional organization of the inferior parietal lobule of the macaque monkey. Soc Neurosci Abstr 919.7Google Scholar
  22. Ferrari PF, Rozzi S, Fogassi L (2005a) Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. J Cognit Neurosci 17:212–226CrossRefGoogle Scholar
  23. Ferrari PF, Maiolini C, Addessi E, Fogassi L, Rizzolatti G, Visalberghi E (2005b) The observation and hearing of eating actions activates motor programs related to eating in macaque monkeys. Behav Brain Res 161:95–101PubMedCrossRefGoogle Scholar
  24. Fogassi L, Ferrari PF (2004) Mirror neurons, gestures and language evolution. Interact Stud 5:345–363CrossRefGoogle Scholar
  25. Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15:626–663PubMedCrossRefGoogle Scholar
  26. Fogassi L, Gallese V, Fadiga L, Rizzolatti G (1996a) Space coding in inferior premotor cortex (area F4): facts and speculations. In: Laquaniti F Viviani P (eds) Neural basis of motor behavior. NATO ASI series. Kluwer, Dordrecht, pp 99–120Google Scholar
  27. Fogassi L, Gallese V, Fadiga L, Luppino G, Matelli M, Rizzolatti G (1996b) Coding of peripersonal space in inferior premotor cortex (area F4). J Neurophysiol 76:141–157PubMedGoogle Scholar
  28. Fogassi L, Gallese V, Fadiga L, Rizzolatti G (1998) Neurons responding to the sight of goal-directed hand/arm actions in the parietal area PF (7b) of the macaque monkey. Soc Neurosci Abstr 275.5Google Scholar
  29. Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667PubMedCrossRefGoogle Scholar
  30. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609PubMedCrossRefGoogle Scholar
  31. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (2002) Action representation and the inferior parietal lobule. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance, vol 19. Oxford University Press, Oxford, pp 334–355Google Scholar
  32. Gallese V, Keysers C, Rizzolatti G (2004) A unifying view of the basis of social cognition. Trends Cognit Sci 8:396–403CrossRefGoogle Scholar
  33. Gangitano M, Mottaghy FM, Pascual-Leone A (2004) Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements. Eur J Neurosci 20:2193–2202PubMedCrossRefGoogle Scholar
  34. Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1988) Functional organization of inferior area 6 in the macaque monkey: I. Somatotopy and the control of proximal movements. Exp Brain Res 71:475–490PubMedCrossRefGoogle Scholar
  35. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relation between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537PubMedGoogle Scholar
  36. Goodale MA, Westwood DA (2004) An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 14:203–211PubMedCrossRefGoogle Scholar
  37. Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by PET: 2. Observation compared with imagination. Exp Brain Res 112:103–111PubMedCrossRefGoogle Scholar
  38. Graziano MSA, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266:1054–1057PubMedCrossRefGoogle Scholar
  39. Graziano MSA, Hu X, Gross CG (1997) Visuo-spatial properties of ventral premotor cortex. J Neurophysiol 77:2268–2292PubMedGoogle Scholar
  40. Gregoriou GG, Borra E, Matelli M, Luppino G (2006) Architectonic organization of the inferior parietal convexity of the macaque monkey. J Comp Neurol 496:422–451PubMedCrossRefGoogle Scholar
  41. Grèzes J, Costes N, Decety J (1998) Top-down effect of strategy on the perception of human biological motion: a PET investigation. Cognit Neuropsychol 15:553–582CrossRefGoogle Scholar
  42. Grèzes J, Armony JL, Rowe J, Passingham RE (2003) Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. Neuroimage 18:928–937PubMedCrossRefGoogle Scholar
  43. Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H (2006) Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 16:1276–1282PubMedCrossRefGoogle Scholar
  44. Hari R, Forss N, Avikainen S, Kirveskari S, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95:15061–15065PubMedCrossRefGoogle Scholar
  45. Hast MH, Fischer JM, Wetzel AB, Thompson VE (1974) Cortical motor representation of the laryngeal muscles in Macaca mulatta. Brain Res 73:229–240PubMedCrossRefGoogle Scholar
  46. Hauk O, Johonsrude I, Pulvermuller F (2004) Somatotopic representation of action words in human motor and premotor cortex. Neuron 41:301–307PubMedCrossRefGoogle Scholar
  47. Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528PubMedCrossRefGoogle Scholar
  48. Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) Grasping the intentions of others with one’s own mirror neuron system. PloS Biol 3:529–535CrossRefGoogle Scholar
  49. Johnson-Frey SH, Maloof FR, Newman-Norlund R, Farrer C, Inati S, Grafton ST (2003) Actions or hand-object interactions? Human inferior frontal cortex and action observation. Neuron 39:1053–1058PubMedCrossRefGoogle Scholar
  50. Kalaska JF, Cohen DA, Hyde ML, Prud’homme M (1989) A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosi 9:2080–2102Google Scholar
  51. Kohler E, Keysers C, Umiltà MA, Fogassi L, Gallese V, Rizzolatti G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297:846–848PubMedCrossRefGoogle Scholar
  52. Koski L, Wohlschlager A, Bekkering H, Woods RP, Dubeau MC (2002) Modulation of motor and premotor activity during imitation of target-directed actions. Cereb Cortex 12:847–855PubMedCrossRefGoogle Scholar
  53. Kumashiro M, Ishibashi H, Uchiyama Y, Itakura S, Murata A, Iriki A (2003) Natural imitation induced by joint attention in Japanese monkeys. Int J Psychophysiol 50:81–99PubMedCrossRefGoogle Scholar
  54. Liberman AM, Mattingly IG (1985) The motor theory of speech perception revised. Cognition 21:1–36PubMedCrossRefGoogle Scholar
  55. Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128:181–187PubMedCrossRefGoogle Scholar
  56. Manthey S, Schubotz RI, von Cramon DY (2003) Premotor cortex in observing erroneous action: an fMRI study. Brain Res Cognit Brain Res 15:296–307CrossRefGoogle Scholar
  57. Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cognit Sci 8:79–85CrossRefGoogle Scholar
  58. Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18:125–136PubMedCrossRefGoogle Scholar
  59. Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462PubMedCrossRefGoogle Scholar
  60. Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251:281–298PubMedCrossRefGoogle Scholar
  61. Matsumura M, Kubota K (1979) Cortical projection of hand-arm motor area from postarcuate area in macaque monkeys: a histological study of retrograde transport of horseradish peroxidase. Neurosci Lett 11:241–246PubMedCrossRefGoogle Scholar
  62. Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor’ areas. Brain Res 177:176–182PubMedCrossRefGoogle Scholar
  63. Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78:2226–2230PubMedGoogle Scholar
  64. Nelissen K, Luppino G, Vanduffel W, Rizzolatti G, Orban G (2005) Observing others: multiple action representation in the frontal lobe. Science 310:332–336PubMedCrossRefGoogle Scholar
  65. Nishitani N, Hari R (2000) Temporal dynamics of cortical representation for action. Proc Natl Acad Sci USA 97:913–918PubMedCrossRefGoogle Scholar
  66. Nishitani N, Hari R (2002) Viewing lip forms: cortical dynamics. Neuron 36:1211–1220PubMedCrossRefGoogle Scholar
  67. Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–210PubMedCrossRefGoogle Scholar
  68. Parsons LM, Fox PT, Hunter Down J, Glass T, Hirsch TB, Martin CC, Jerabek PA, Lancaster JL (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature (Lond) 375:54–58PubMedCrossRefGoogle Scholar
  69. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 37:389–443CrossRefGoogle Scholar
  70. Perrett, DI, Harries MH, Bevan R, Thomas S, Benson PJ, Mistlin AJ, Chitty AK, Hietanen JK, Ortega JE (1989) Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol 146:87–113PubMedGoogle Scholar
  71. Perrett DI, Mistlin AJ, Harries MH, Chitty AJ (1990) Understanding the visual appearance and consequence of hand actions. In: Goodale MA (ed) Vision and action: the control of grasping. Ablex, Norwood, pp 163–342Google Scholar
  72. Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116PubMedCrossRefGoogle Scholar
  73. Petrides M, Pandya DN (1997) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol IX. Elsevier, New York, pp 17–58Google Scholar
  74. Petrides M, Cadoret G, Mackey S (2005) Oro-facial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature (Lond) 435:1235–1238PubMedCrossRefGoogle Scholar
  75. Raos V, Umiltá MA, Murata A, Fogassi L, Gallese V (2006) Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol 95:709–729PubMedCrossRefGoogle Scholar
  76. Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194PubMedCrossRefGoogle Scholar
  77. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27: 169–192PubMedCrossRefGoogle Scholar
  78. Rizzolatti G, Fadiga L, Fogassi L, Gallese V (1996a) Premotor cortex and the recognition of motor actions. Cognit Brain Res 3:131–141CrossRefGoogle Scholar
  79. Rizzolatti G, Fadiga L, Matelli M, et al. (1996b) Localization of grasp representation in humans by PET: 1. Observation versus execution. Exp Brain Res 111:246–252PubMedCrossRefGoogle Scholar
  80. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296PubMedCrossRefGoogle Scholar
  81. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670PubMedCrossRefGoogle Scholar
  82. Rizzolatti G, Fogassi L, Gallese V (2004) Cortical mechanism subserving object grasping, action understanding and imitation. In: Gazzaniga MS (ed) The cognitive neurosciences, 3rd edn. MIT Press, Cambridge, pp 427–440Google Scholar
  83. Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2005) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16:1389–1417PubMedCrossRefGoogle Scholar
  84. Seltzer B, Panda D (1994) Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J Comp Neurol 343:445–463PubMedCrossRefGoogle Scholar
  85. Strafella AP, Paus T (2000) Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. NeuroReport 11:2289–2292PubMedCrossRefGoogle Scholar
  86. Tettamanti M, Buccino G, Saccuman MC, Gallese V, Danna M, Scifo P, Fazio F, Rizzolatti G, Cappa S, Perani D (2005) Listening to action-related sentences activates fronto-parietal motor circuits. J Cognit Neurosci 17:273–281CrossRefGoogle Scholar
  87. Umiltà MA, Kohler E, Gallese V (2001) “I know what you are doing”: a neurophysiological study. Neuron 32:91–101Google Scholar
  88. Visalberghi E, Addessi E (2000) Seeing group members eating a familiar food enhances the acceptance of novel foods in capuchin monkeys. Anim Behav 60:69–76PubMedCrossRefGoogle Scholar
  89. Visalberghi E, Fragaszy D (2002) Do monkeys ape? Ten years later. In: Dautenhahn K, Nehaniv C (eds) Imitation in animals and artifacts. MIT Press, Cambridge, pp 471–479Google Scholar
  90. Woolsey CN, Settlage PH, Meyer DR, Sencer W, Hamuy TP, Travis AM (1951) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Publ Assoc Res Nerv Ment Dis 30:238–264Google Scholar
  91. Zatorre RJ, Meyer E, Gjedde A, Evans AC (1996) PET studies of phonetic processing of speech: review, replication, and reanalysis. Cereb Cortex 6:21–30PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Leonardo Fogassi
    • 1
    • 2
  1. 1.Department of NeuroscienceSection PhysiologyParmaItaly
  2. 2.Department of PsychologyParmaItaly

Personalised recommendations