Skip to main content

Invariant Representations of Objects in Natural Scenes in the Temporal Cortex Visual Areas

  • Chapter
Book cover Representation and Brain

Abstract

Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size and view of faces and objects, and that these neurons show rapid processing and rapid learning. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. The operation of the inferior temporal cortex when objects are selected in natural scenes, and the encoding of multiple objects in a scene, are described. A theory is described of how such invariant representations may be produced in a hierarchically organized set of visual cortical areas with convergent connectivity. The theory proposes that neurons in these visual areas use a modified Hebb synaptic modification rule with a short term memory trace to capture whatever can be captured at each stage that is invariant about objects as the objects change in retinal view, position, size, and rotation. Another population of neurons in the cortex in the superior temporal sulcus encodes other aspects of faces such as face expression, eye gaze, face view, and whether the head is moving. Outputs of these systems reach the amygdala, in which face-selective neurons are found, and also the orbitofrontal cortex, in which some neurons are tuned to face identity and others to face expression. In humans, activation of the orbitofrontal cortex is found when a change of face expression acts as a social signal that behavior should change; and damage to the orbitofrontal cortex can impair face and voice expression identification, and also the reversal of emotional behavior that normally occurs when reinforcers are reversed (see Rolls, E.T. 2008, Memory, Attention and Decision-Making. Oxford University Press).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LF, Rolls ET, Tovee MJ (1996) Representational capacity of face coding in monkeys. Cereb Cortex 6:498–505

    Article  PubMed  CAS  Google Scholar 

  • Adolphs R, Baron-Cohen S, Tranel D (2002) Impaired recognition of social emotions following amygdala damage. J Cognit Neurosci 14:1264–1274

    Article  Google Scholar 

  • Adolphs R, Tranel D, Damasio H, Damasio AR (1995) Fear and the human amygdala. J Neurosci 15:5879–5891

    PubMed  CAS  Google Scholar 

  • Aggelopoulos NC, Rolls ET (2005) Natural scene perception: inferior temporal cortex neurons encode the positions of different objects in the scene. Eur J Neurosci 22:2903–2916

    Article  PubMed  Google Scholar 

  • Aggelopoulos NC, Franco L, Rolls ET (2005) Object perception in natural scenes: encoding by inferior temporal cortex simultaneously recorded neurons. J Neurophysiol 93:1342–1357

    Article  PubMed  Google Scholar 

  • Baddeley RJ, Abbott LF, Booth MJA, Sengpiel F, Freeman T, Wakeman EA, Rolls ET (1997) Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc R Soc Lond B 264:1775–1783

    Article  CAS  Google Scholar 

  • Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11:168–190

    PubMed  CAS  Google Scholar 

  • Ballard DH (1990) Animate vision uses object-centred reference frames. In: Eckmiller R (ed) Advanced neural computers. North-Holland, Amsterdam, pp 229–236

    Google Scholar 

  • Ballard DH (1993) Subsymbolic modelling of hand-eye coordination. In: Broadbent DE (ed) The simulation of human intelligence. Blackwell, Oxford, pp 71–102

    Google Scholar 

  • Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1:371–394

    Article  PubMed  CAS  Google Scholar 

  • Baylis GC, Rolls ET (1987) Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Exp Brain Res 65:614–622

    Article  PubMed  CAS  Google Scholar 

  • Baylis GC, Rolls ET, Leonard CM (1985) Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey. Brain Res 342:91–102

    Article  PubMed  CAS  Google Scholar 

  • Baylis GC, Rolls ET, Leonard CM (1987) Functional subdivisions of the temporal lobe neocortex. J Neurosci 7:330–342

    PubMed  CAS  Google Scholar 

  • Biederman I (1972) Perceiving real-world scenes. Science 177: 77–80

    Article  PubMed  CAS  Google Scholar 

  • Booth MCA, Rolls ET (1998) View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb Cortex 8:510–523

    Article  PubMed  CAS  Google Scholar 

  • Boussaoud D, Desimone R, Ungerleider LG (1991) Visual topography of area TEO in the macaque. J Comp Neurol 306:554–575

    Article  PubMed  CAS  Google Scholar 

  • Brothers L, Ring B, Kling A (1990) Response of neurons in the macaque amygdala to complex social stimuli. Behav Brain Res 41:199–213

    Article  PubMed  CAS  Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    PubMed  CAS  Google Scholar 

  • Calder AJ, Young AW, Rowland D, Perrett DI, Hodges JR, Etcoff NL (1996) Facial emotion recognition after bilateral amygdala damage: differentially severe impairment of fear. Cognit Neuropsychol 13:699–745

    Article  Google Scholar 

  • Chelazzi L, Miller E, Duncan J, Desimone R (1993) A neural basis for visual search in inferior temporal cortex. Nature (Lond) 363:345–347

    Article  PubMed  CAS  Google Scholar 

  • Corchs S, Deco G (2002) Large-scale neural model for visual attention: integration of experimental single-cell and fMRI data. Cereb Cortex 12:339–348

    Article  PubMed  Google Scholar 

  • Cowey A, Rolls ET (1975) Human cortical magnification factor and its relation to visual acuity. Exp Brain Res 21:447–454

    Google Scholar 

  • Deco G, Lee TS (2002) A unified model of spatial and object attention based on intercortical biased competition. Neurocomputing 44–46:769–774

    Google Scholar 

  • Deco G, Rolls ET (2002) Object-based visual neglect: a computational hypothesis. Eur J Neurosci 16:1994–2000

    Article  PubMed  Google Scholar 

  • Deco G, Rolls ET (2003) Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex. Eur J Neurosci 18: 2374–2390

    Article  PubMed  Google Scholar 

  • Deco G, Rolls ET (2004) A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res 44:621–644

    Article  PubMed  Google Scholar 

  • Deco G, Rolls ET (2005a) Attention, short-term memory, and action selection: a unifying theory. Prog Neurobiol 76:236–256

    PubMed  Google Scholar 

  • Deco G, Rolls ET (2005b) Synaptic and spiking dynamics underlying reward reversal in orbitofrontal cortex. Cereb Cortex 15:15–30

    Article  PubMed  Google Scholar 

  • Deco G, Rolls ET (2005c) Neurodynamics of biased competition and co-operation for attention: a model with spiking neurons. J Neurophysiol 94:295–313

    Article  PubMed  CAS  Google Scholar 

  • Deco G, Rolls ET (2006) A neurophysiological model of decision-making and Weber’s law. European Journal of Neuroscience 24:901–916

    Article  PubMed  Google Scholar 

  • Deco G, Zihl J (2001) Top-down selective visual attention: a neurodynamical approach. Visual Cognit 8:119–140

    Google Scholar 

  • Desimone R (1991) Face-selective cells in the temporal cortex of monkeys. J Cognit Neurosci 3:1–8

    Article  Google Scholar 

  • Desimone R, Gross CG (1979) Visual areas in the temporal cortex of the macaque. Brain Res 178:363–380

    Article  PubMed  CAS  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  PubMed  CAS  Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce CJ (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4:2051–2062

    PubMed  CAS  Google Scholar 

  • Dolan RJ, Fink GR, Rolls ET, Booth M, Holmes A, Frackowiak RSJ, Friston KJ (1997) How the brain learns to see objects and faces in an impoverished context. Nature (Lond) 389:596–599

    Article  PubMed  CAS  Google Scholar 

  • Elliffe MCM, Rolls ET, Stringer SM (2002) Invariant recognition of feature combinations in the visual system. Biol Cybern 86:59–71

    Article  PubMed  CAS  Google Scholar 

  • Földiák P (1991) Learning invariance from transformation sequences. Neural Comput 3:194–200

    Article  Google Scholar 

  • Franco L, Rolls ET, Aggelopoulos NC, Treves A (2004) The use of decoding to analyze the contribution to the information of the correlations between the firing of simultaneously recorded neurons. Exp Brain Res 155:370–384

    Article  PubMed  Google Scholar 

  • Franco L, Rolls ET, Aggelopoulos NC, Jerez JM (2007) Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biological Cybernetics.

    Google Scholar 

  • Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193–202

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K (1989) Analysis of the process of visual pattern recognition by the neocognitron. Neural Networks 2:413–420

    Article  Google Scholar 

  • Fukushima K (1991) Neural networks for visual pattern recognition. IEEE Trans 74:179–190

    Google Scholar 

  • Gawne TJ, Richmond BJ (1993) How independent are the messages carried by adjacent inferior temporal cortical neurons? J Neurosci 13:2758–2771

    PubMed  CAS  Google Scholar 

  • Georges-François P, Rolls ET, Robertson RG (1999) Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. Cereb Cortex 9:197–212

    Article  PubMed  Google Scholar 

  • Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677

    Article  PubMed  CAS  Google Scholar 

  • Gross CG, Desimone R, Albright TD, Schwartz EL (1985) Inferior temporal cortex and pattern recognition. Exp Brain Res 11:179–201

    Google Scholar 

  • Hasselmo ME, Rolls ET, Baylis GC (1989a) The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behav Brain Res 32:203–218

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME, Rolls ET, Baylis GC, Nalwa V (1989b) Object-centred encoding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey. Exp Brain Res 75:417–429

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Hoffman EA, Gobbini MI (2002) Human neural systems for face recognition and social communication. Biol Psychiatry 51:59–67

    Article  PubMed  Google Scholar 

  • Hornak J, Rolls ET, Wade D (1996) Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia 34:247–261

    Article  PubMed  CAS  Google Scholar 

  • Hornak J, Bramham J, Rolls ET, Morris RG, O’Doherty J, Bullock PR, Polkey CE (2003) Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulated cortices. Brain 126:1691–1712

    Article  PubMed  CAS  Google Scholar 

  • Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, Polkey CE (2004) Reward-related reversal learning after surgical excisions in orbitofrontal and dorsolateral prefrontal cortex in humans. J Cognit Neurosci 16:463–478

    Article  CAS  Google Scholar 

  • Koenderink JJ, Van Doorn AJ (1979) The internal representation of solid shape with respect to vision. Biol Cybern 32:211–217

    Article  PubMed  CAS  Google Scholar 

  • Kringelbach ML, Rolls ET (2003) Neural correlates of rapid reversal learning in a simple model of human social interaction. Neuroimage 20:1371–1383

    Article  PubMed  Google Scholar 

  • Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72:341–372

    Article  PubMed  Google Scholar 

  • Leonard CM, Rolls ET, Wilson FAW, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159–176

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577–621

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Bülthoff HH, Poggio T (1994) View-dependent object recognition by monkeys. Curr Biol 4:401–414

    Article  PubMed  CAS  Google Scholar 

  • Marr D (1982) Vision. Freeman, San Francisco

    Google Scholar 

  • Martinez-Trujillo J, Treue S (2002) Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron 35:365–370

    Article  PubMed  CAS  Google Scholar 

  • Maunsell JH, Newsome WT (1987) Visual processing in monkey extrastriate cortex. Annu Rev Neurosci 10:363–401

    Article  PubMed  CAS  Google Scholar 

  • Mikami A, Nakamura K, Kubota K (1994) Neuronal responses to photographs in the superior temporal sulcus of the rhesus monkey. Behav Brain Res 60:1–13

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-term memory. Science 263:520–522

    Article  PubMed  CAS  Google Scholar 

  • Miyashita Y (1993) Inferior temporal cortex: where visual perception meets memory. Annu Rev Neurosci 16:245–263

    Article  PubMed  CAS  Google Scholar 

  • Mozer M (1991) The perception of multiple objects: a connectionist approach. MIT Press, Cambridge

    Google Scholar 

  • Panzeri S, Biella G, Rolls ET, Skaggs WE, Treves A (1996) Speed, noise, information and the graded nature of neuronal responses. Network 7:365–370

    PubMed  CAS  Google Scholar 

  • Panzeri S, Treves A, Schultz S, Rolls ET (1999a) On decoding the responses of a population of neurons from short time epochs. Neural Comput 11:1553–1577

    Article  PubMed  CAS  Google Scholar 

  • Panzeri S, Schultz SR, Treves A, Rolls ET (1999b) Correlations and the encoding of information in the nervous system. Proc R Soc Lond B 266:1001–1012

    Article  CAS  Google Scholar 

  • Panzeri S, Rolls ET, Battaglia F, Lavis R (2001) Speed of feed-forward and recurrent processing in multilayer networks of integrate-and-fire neurons. Network Comput Neural Syst 12:423–440

    Article  CAS  Google Scholar 

  • Perrett DI, Rolls ET, Caan W (1982) Visual neurons responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342

    Article  PubMed  CAS  Google Scholar 

  • Perrett DI, Smith PA, Potter DD, Mistlin AJ, Head AS, Milner AD, Jeeves MA (1985a) Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R Soc Lond B 223:293–317

    Article  PubMed  CAS  Google Scholar 

  • Perrett DI, Smith PAJ, Mistlin AJ, Chitty AJ, Head AS, Potter DD, Broennimann R, Milner AD, Jeeves MA (1985b) Visual analysis of body movements by neurons in the temp oral cortex of the macaque monkey: a preliminary report. Behav Brain Res 16:153–170

    Article  PubMed  CAS  Google Scholar 

  • Perrett D, Mistlin A, Chitty A (1987) Visual neurons responsive to faces. Trends Neurosci 10:358–364

    Article  Google Scholar 

  • Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14:198–202

    Article  PubMed  CAS  Google Scholar 

  • Poggio T, Edelman S (1990) A network that learns to recognize three-dimensional objects. Nature (Lond) 343:263–266

    Article  PubMed  CAS  Google Scholar 

  • Renart A, Parga N, Rolls ET (2000) A recurrent model of the interaction between the prefrontal cortex and inferior temporal cortex in delay memory tasks. In: Solla SA, Leen TK, Mueller KR (eds) Advances in neural information processing systems, vol 12. MIT Press, Cambridge, pp 171–177

    Google Scholar 

  • Renart A, Moreno R, de la Rocha J, Parga N, Rolls ET (2001) A model of the IT-PF network in object working memory which includes balanced persistent activity and tuned inhibition. Neurocomputing 38–40:1525–1531

    Article  Google Scholar 

  • Reynolds J, Desimone R (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron 24:19–29

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci 19:1736–1753

    PubMed  CAS  Google Scholar 

  • Robertson RG, Rolls ET, Georges-François P (1998) Spatial view cells in the primate hippocampus: effects of removal of view details. J Neurophysiol 79:1145–1156

    PubMed  CAS  Google Scholar 

  • Rolls ET (1981) Responses of amygdaloid neurons in the primate. In: Ben-Ari Y (ed) The amygdaloid complex. Elsevier, Amsterdam, pp 383–393

    Google Scholar 

  • Rolls ET (1984) Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Human Neurobiol 3:209–222

    CAS  Google Scholar 

  • Rolls ET (1986a) A theory of emotion, and its application to understanding the neural basis of emotion. In: Oomura Y (ed) Emotions. Neural and chemical control. Karger, Basel, pp 325–344

    Google Scholar 

  • Rolls ET (1986b) Neural systems involved in emotion in primates. In: Plutchik R, Kellerman H (eds) Emotion: theory, research, and experience, vol 3. Biological foundations of emotion. Academic Press, New York, pp 125–143

    Google Scholar 

  • Rolls ET (1989a) Functions of neuronal networks in the hippocampus and neocortex in memory. In: Byrne JH, Berry WO (eds) Neural models of plasticity: experimental and theoretical approaches. Academic Press, San Diego, pp 240–265

    Google Scholar 

  • Rolls ET (1989b) The representation and storage of information in neuronal networks in the primate cerebral cortex and hippocampus. In: Durbin R, Miall C, Mitchison G (eds) The computing neuron. Addison-Wesley, Wokingham, England, pp 125–159

    Google Scholar 

  • Rolls ET (1990) A theory of emotion, and its application to understanding the neural basis of emotion. Cognit Emotion 4:161–190

    Article  Google Scholar 

  • Rolls ET (1991) Neural organisation of higher visual functions. Curr Opin Neurobiol 1:274–278

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET (1992a) Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philos Trans R Soc Lond B 335:11–21

    Article  CAS  Google Scholar 

  • Rolls ET (1992b) Neurophysiology and functions of the primate amygdala. In: Aggleton JP (ed) The amygdala. Wiley-Liss, New York, pp 143–165

    Google Scholar 

  • Rolls ET (1997) A neurophysiological and computational approach to the functions of the temporal lobe cortical visual areas in invariant object recognition. In: Jenkin M, Harris L (eds) Computational and psychophysical mechanisms of visual coding. Cambridge University Press, Cambridge, pp 184–220

    Google Scholar 

  • Rolls ET (1999a) The functions of the orbitofrontal cortex. Neurocase 5:301–312

    Article  Google Scholar 

  • Rolls ET (1999b) The brain and emotion. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET (1999c) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9:467–480

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET (2000a) Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205–218

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET (2000b) Neurophysiology and functions of the primate amygdala, and the neural basis of emotion. In: Aggleton JP (ed) The amygdala: a functional analysis, 2nd edn. Oxford University Press, Oxford, pp 447–478

    Google Scholar 

  • Rolls ET (2003) Consciousness absent and present: a neurophysiological exploration. Prog Brain Res 144:95–106

    Article  Google Scholar 

  • Rolls ET (2005) Emotion explained. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET (2007) The representation of information about faces in the temporal and frontal lobes. Neuropsychologia 45:124–143

    Article  PubMed  Google Scholar 

  • Rolls ET (2008) Memory, attention, and decision-making. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET, Baylis GC (1986) Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey. Exp Brain Res 65:38–48

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Cowey A (1970) Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp Brain Res 10:298–310

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Deco G (2002) Computational neuroscience of vision. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET, Kesner RP (2006) A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology 79:1–48

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Milward T (2000) A model of invariant object recognition in the visual system: learning rules, activation functions, lateral inhibition, and information-based performance measures. Neural Comput 12:2547–2572

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Stringer SM (2001) Invariant object recognition in the visual system with error correction and temporal difference learning. Network Comput Neural Syst 12:111–129

    Article  CAS  Google Scholar 

  • Rolls ET, Stringer SM (2006) Invariant visual object recognition: a model, with lighting invariance. Journal of Physiology — Paris 100:43–62

    Article  Google Scholar 

  • Rolls ET, Stringer SM (2007) Invariant global motion recognition in the dorsal visual system: a unifying theory. Neural Computation 19:139–169

    Article  PubMed  Google Scholar 

  • Rolls ET, Tovee MJ (1994) Processing speed in the cerebral cortex and the neurophysiology of visual masking. Proc R Soc Lond B 257:9–15

    Article  CAS  Google Scholar 

  • Rolls ET, Tovee MJ (1995a) Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J Neurophysiol 73:713–726

    PubMed  CAS  Google Scholar 

  • Rolls ET, Tovee MJ (1995b) The responses of single neurons in the temporal visual cortical areas of the macaque when more than one stimulus is present in the visual field. Exp Brain Res 103:409–420

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Treves A (1990) The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain. Network 1:407–421

    Article  Google Scholar 

  • Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET, Xiang J-Z (2005) Reward-spatial view representations and learning in the hippocampus. J Neurosci 25:6167–6174

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Xiang J-Z (2006) Spatial view cells in the primate hippocampus, and memory recall. Rev Neurosci 17:175–200

    PubMed  Google Scholar 

  • Rolls ET, Baylis GC, Leonard CM (1985) Role of low and high spatial frequencies in the face-selective responses of neurons in the cortex in the superior temporal sulcus in the monkey. Vision Res 25:1021–1035

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Baylis GC, Hasselmo ME (1987) The responses of neurons in the cortex in the superior temporal sulcus of the monkey to band-pass spatial frequency filtered faces. Vision Res 27:311–326

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Baylis GC, Hasselmo M, Nalwa V (1989a) The representation of information in the temporal lobe visual cortical areas of macaque monkeys. In: Kulikowski JJ, Dickinson CM, Murray IJ (eds) Seeing contour and colour. Pergamon, Oxford

    Google Scholar 

  • Rolls ET, Baylis GC, Hasselmo ME, Nalwa V (1989b) The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. Exp Brain Res 76:153–164

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Tovee MJ, Purcell DG, Stewart AL, Azzopardi P (1994) The responses of neurons in the temporal cortex of primates, and face identification and detection. Exp Brain Res 101:473–484

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Critchley HD, Treves A (1996) The representation of olfactory information in the primate orbitofrontal cortex. J Neurophysiol 75:1982–1996

    PubMed  CAS  Google Scholar 

  • Rolls ET, Treves A, Tovee MJ (1997a) The representational capacity of the distributed encoding of information provided by populations of neurons in the primate temporal visual cortex. Exp Brain Res 114:177–185

    Article  Google Scholar 

  • Rolls ET, Robertson RG, Georges-François P (1997b) Spatial view cells in the primate hippocampus. Eur J Neurosci 9:1789–1794

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Treves A, Robertson RG, Georges-François P, Panzeri S (1998) Information about spatial view in an ensemble of primate hippocampal cells. J Neurophysiol 79:1797–1813

    PubMed  CAS  Google Scholar 

  • Rolls ET, Tovee MJ, Panzeri S (1999) The neurophysiology of backward visual masking: information analysis. J Cognit Neurosci 11:335–346

    Article  Google Scholar 

  • Rolls ET, Aggelopoulos NC, Zheng F (2003a) The receptive fields of inferior temporal cortex neurons in natural scenes. J Neurosci 23:339–348

    PubMed  CAS  Google Scholar 

  • Rolls ET, Franco L, Aggelopoulos NC, Reece S (2003b) An information theoretic approach to the contributions of the firing rates and correlations between the firing of neurons. J Neurophysiol 89:2810–2822

    Article  PubMed  Google Scholar 

  • Rolls ET, Aggelopoulos NC, Franco L, Treves A (2004) Information encoding in the inferior temporal cortex: contributions of the firing rates and correlations between the firing of neurons. Biol Cybern 90:19–32

    Article  PubMed  Google Scholar 

  • Rolls ET, Xiang J-Z, Franco L (2005) Object, space and object-space representations in the primate hippocampus. J Neurophysiol 94:833–844

    Article  PubMed  Google Scholar 

  • Rolls ET, Critchley HD, Browning AS, Inoue K (2006a) Face-selective and auditory neurons in the primate orbitofrontal cortex. Exp Brain Res 170:74–87

    Article  PubMed  Google Scholar 

  • Rolls ET, Franco L, Aggelopoulos NC, Perez JM (2006b) Information in the first spike, the order of spikes, and the number of spikes provided by neurons in the inferior temporal visual cortex. Vision Res 46:4193–4205

    Article  PubMed  Google Scholar 

  • Sato T (1989) Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques. Exp Brain Res 77:23–30

    Article  PubMed  CAS  Google Scholar 

  • Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149:1–24

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24:49–65

    Article  PubMed  CAS  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  PubMed  CAS  Google Scholar 

  • Spiridon M, Kanwisher N (2002) How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron 35:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Stringer SM, Rolls ET (2000) Position invariant recognition in the visual system with cluttered environments. Neural Networks 13:305–315

    Article  PubMed  CAS  Google Scholar 

  • Stringer SM, Rolls ET (2002) Invariant object recognition in the visual system with novel views of 3D objects. Neural Comput 14:2585–2596

    Article  PubMed  Google Scholar 

  • Stringer SM, Perry G, Rolls ET, Proske JH (2006) Learning invariant object recognition in the visual system with continuous transformations. Biol Cybern 94:128–142

    Article  PubMed  CAS  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning. MIT Press, Cambridge

    Google Scholar 

  • Tanaka K (1993) Neuronal mechanisms of object recognition. Science 262:685–688

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Saito C, Fukada Y, Moriya M (1990) Integration of form, texture, and color information in the inferotemporal cortex of the macaque. In: Iwai E, Mishkin M (eds) Vision, memory and the temporal lobe. Elsevier, New York, pp 101–109.

    Google Scholar 

  • Thorpe SJ, Imbert M (1989) Biological constraints on connectionist models. In: Pfeifer R, Schreter Z, Fogelman-Soulie F (eds) Connectionism in perspective. Elsevier, Amsterdam, pp 63–92

    Google Scholar 

  • Thorpe SJ, Rolls ET, Maddison S (1983) Neuronal activity in the orbitofrontal cortex of the behaving monkey. Exp Brain Res 49:93–115

    Article  PubMed  CAS  Google Scholar 

  • Tovee MJ, Rolls ET (1995) Information encoding in short firing rate epochs by single neurons in the primate temporal visual cortex. Visual Cognit 2:35–58

    Article  Google Scholar 

  • Tovee MJ, Rolls ET, Treves A, Bellis RP (1993) Information encoding and the responses of single neurons in the primate temporal visual cortex. J Neurophysiol 70:640–654

    PubMed  CAS  Google Scholar 

  • Tovee MJ, Rolls ET, Azzopardi P (1994) Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. J Neurophysiol 72:1049–1060

    PubMed  CAS  Google Scholar 

  • Tovee MJ, Rolls ET, Ramachandran VS (1996) Rapid visual learning in neurones of the primate temporal visual cortex. Neuroreport 7:2757–2760

    Article  PubMed  CAS  Google Scholar 

  • Trappenberg TP, Rolls ET, Stringer SM (2002) Effective size of receptive fields of inferior temporal cortex neurons in natural scenes. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems, 14, vol 1. MIT Press, Cambridge, pp 293–300

    Google Scholar 

  • Treves A (1993) Mean-field analysis of neuronal spike dynamics. Network 4:259–284

    Google Scholar 

  • Treves A, Rolls ET (1991) What determines the capacity of autoassociative memories in the brain? Network 2:371–397

    Google Scholar 

  • Treves A, Rolls ET, Tovee MJ (1996) On the time required for recurrent processing in the brain. In: Torre V, Conti F (eds) Neurobiology: ionic channels, neurons, and the brain. Plenum, New York, pp 325–353

    Google Scholar 

  • Treves A, Rolls ET, Simmen M (1997) Time for retrieval in recurrent associative memories. Physica D 107:392–400

    Article  Google Scholar 

  • Treves A, Panzeri S, Rolls ET, Booth M, Wakeman EA (1999) Firing rate distributions and efficiency of information transmission of inferior temporal cortex neurons to natural visual stimuli. Neural Computat 11:611–641

    Article  Google Scholar 

  • Ullman S (1996) High-level vision: object recognition and visual cognition. Bradford/MIT Press, Cambridge

    Google Scholar 

  • Usher M, Niebur E (1996) Modelling the temporal dynamics of IT neurons in visual search: a mechanism for top-down selective attention. J Cognit Neurosci 8:311–327

    Article  Google Scholar 

  • von der Malsburg C (1990) A neural architecture for the representation of scenes. In: McGaugh JL, Weinberger NM, Lynch G (eds) Brain organisation and memory: cells, systems and circuits. Oxford University Press, New York, pp 356–372

    Google Scholar 

  • Wallis G, Rolls ET (1997) Invariant face and object recognition in the visual system. Prog Neurobiol 51:167–194

    Article  PubMed  CAS  Google Scholar 

  • Wallis G, Rolls ET, Földiák P (1993) Learning invariant responses to the natural transformations of objects. In: International Joint Conference on Neural Networks, vol 2, pp 1087–1090

    Google Scholar 

  • Williams GV, Rolls ET, Leonard CM, Stern C (1993) Neuronal responses in the ventral striatum of the behaving macaque. Behav Brain Res 55:243–252

    Article  PubMed  CAS  Google Scholar 

  • Wilson FAW, O’Scalaidhe SPO, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958

    Article  PubMed  CAS  Google Scholar 

  • Xiang J-Z, Brown MW (1998) Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37:657–676

    Article  PubMed  CAS  Google Scholar 

  • Yamane S, Kaji S, Kawano K (1988) What facial features activate face neurons in the inferotemporal cortex of the monkey? Exp Brain Res 73:209–214

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Rolls, E.T. (2007). Invariant Representations of Objects in Natural Scenes in the Temporal Cortex Visual Areas. In: Funahashi, S. (eds) Representation and Brain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73021-7_3

Download citation

Publish with us

Policies and ethics