Skip to main content

Multiple Mechanisms of Top-Down Processing in Vision

  • Chapter

Abstract

No animal could survive for long without perception. We must perceive the world, not only to find food, shelter, and mates, but also to avoid predators. Perception will fail if an animal does not register what is actually in the world. However, this simple observation does not imply that all processing during perception is “bottom up”rd—driven purely by the sensory input. Rather, bottom-up processing can be usefully supplemented by using stored information, engaging in processing that is “top down”—driven by stored knowledge, goals, or expectations. In this chapter we explore the nature of top-down processing and its intimate dance with bottom-up processing. We begin by considering basic facts about the primate visual system, and then consider a theory of its functional organization, followed by novel proposals regarding the nature of different sorts of top-down processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458

    Article  PubMed  CAS  Google Scholar 

  • Barone P, Batardiere A, Knoblauch K, Kennedy H (2000) Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci 20:3263–3281

    PubMed  CAS  Google Scholar 

  • Beauchamp MS, Petit L, Ellmore TM, Ingeholm J, Haxby JV (2001) A parametric fMRI study of overt and covert shifts of visuospatial attention. Neuroimage 14:310–321

    Article  PubMed  CAS  Google Scholar 

  • Brefczynski JA, DeYoe EA (1999) A physiological correlate of the’ spotlight’ of visual attention. Nat Neurosci 2:370–374

    Article  PubMed  CAS  Google Scholar 

  • Budd JM (1998) Extrastriate feedback to primary visual cortex in primates: a quantitative analysis of connectivity. Proc Biol Sci 265:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Buffalo EA, Fries P, Landman R, Liang H, Desimone R (2005) Latency of attentional modulation in ventral visual cortex. Paper presented at the Society for Neuroscience, Washington, DC

    Google Scholar 

  • Cave KR, Kosslyn SM (1989) Varieties of size-specific visual selection. J Exp Psychol Gen 118:148–164

    Article  PubMed  CAS  Google Scholar 

  • Chan D, Fox NC, Scahill RI, Crum WR, Whitwell JL, Leschziner G, et al. (2001) Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Ann Neurol 49:433–442

    Article  PubMed  CAS  Google Scholar 

  • Clavagnier S, Falchier A, Kennedy H (2004) Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness. Cognit Affect Behav Neurosci 4:117–126

    Article  Google Scholar 

  • Corbetta M (1993) Positron emission tomography as a tool to study human vision and attention. Proc Natl Acad Sci U S A 90:10901–10903

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL (1998) Human cortical mechanisms of visual attention during orienting and search. Philos Trans R Soc Lond B Biol Sci 353:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Article  PubMed  CAS  Google Scholar 

  • Damasio AR (1985) The frontal lobes. In: Heilman KM, Valenstein E (eds) Clinical neuropsychology. Oxford University Press, New York

    Google Scholar 

  • Desimone R, Ungerleider LG (1989) Neural mechanisms of visual processing in monkeys. In: Boller F, Grafman J (eds) Handbook of neuropsychology. Elsevier, Amsterdam, pp 267–299

    Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  PubMed  CAS  Google Scholar 

  • Fox PT, Mintun MA, Raichle ME, Miezin FM, Allman JM, Van Essen DC (1986) Mapping human visual cortex with positron emission tomography. Nature (Lond) 323:806–809

    Article  PubMed  CAS  Google Scholar 

  • Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature (Lond) 360:343–346

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K (1988) Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Networks 1:119–130

    Article  Google Scholar 

  • Fuster JM, Bauer RH, Jervey JP (1985) Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res 330:299–307

    Article  PubMed  CAS  Google Scholar 

  • Ganis G, Schendan HE, Kosslyn SM (2007) Neuroimaging evidence for object model verification theory: role of prefrontal control in visual object categorization. Neuroimage 34:384–398

    Article  PubMed  Google Scholar 

  • Girard P, Hupe J, Bullier J (2001) Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J Neurophysiol 85:1328–1331

    PubMed  CAS  Google Scholar 

  • Gregory RL (1970) The intelligent eye. Weidenfeld and Nicholson, London

    Google Scholar 

  • Gross CG, Mishkin M (1977) The neural basis of stimulus equivalence across retinal translation. In: Harnard S, Doty R, Jaynes, Goldstein JL, Krauthamer (eds) Lateralization in the visual system. Academic Press, New York, pp 109–122

    Google Scholar 

  • Grossberg S, Mingolla E (1985) Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. Psychol Rev 92:173–211

    Article  PubMed  CAS  Google Scholar 

  • Halgren E, Mendola J, Chong CD, Dale AM (2003) Cortical activation to illusory shapes as measured with magnetoencephalography. Neuroimage 18:1001–1009

    Article  PubMed  Google Scholar 

  • Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci U S A 88:1621–1625

    Article  PubMed  CAS  Google Scholar 

  • Heeger DJ (1999) Linking visual perception with human brain activity. Curr Opin Neurobiol 9:474–479

    Article  PubMed  CAS  Google Scholar 

  • Hilgetag CC, O’Neill MA, Young MP (1996) Indeterminate organization of the visual system. Science 271:776–777

    Article  PubMed  CAS  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79:2554–2588

    Article  PubMed  CAS  Google Scholar 

  • Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3:284–291

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28:229–289

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 158:295–305

    Article  PubMed  CAS  Google Scholar 

  • Huxlin KR, Saunders RC, Marchionini D, Pham HA, Merigan WH (2000) Perceptual deficits after lesions of inferotemporal cortex in macaques. Cereb Cortex 10:671–683

    Article  PubMed  CAS  Google Scholar 

  • Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22:751–761

    Article  PubMed  CAS  Google Scholar 

  • Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature (Lond) 399:148–151

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn SM (1994) Image and brain. MIT Press, Cambridge

    Google Scholar 

  • Kosslyn SM, Thompson WL, Alpert NM (1995) Identifying objects at different levels of hierarchy: a positron emission tomography study. Hum Brain Mapping 3:107–132

    Article  Google Scholar 

  • Kosslyn SM, Thompson WL, Alpert NM (1997) Neural systems shared by visual imagery and visual perception: a positron emission tomography study. Neuroimage 6:320–334

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn SM, Thompson WL, Ganis G (2006) The case for mental imagery. Oxford University Press, New York

    Google Scholar 

  • Kosslyn SM, Thompson WL, Gitelman DR, Alpert NM (1998) Neural systems that encode categorical vs. coordinate spatial relations: PET investigations. Psychobiology 26:333–347

    Google Scholar 

  • LaBerge D, Buchsbaum MS (1990) Positron emission tomographic measurements of pulvinar activity during an attention task. J Neurosci 10:613–619

    PubMed  CAS  Google Scholar 

  • Lamme VA, Roelfsema PR (2000) The distinct modes of vision offered by feed-forward and recurrent processing. Trends Neurosci 23:571–579

    Article  PubMed  CAS  Google Scholar 

  • Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis 20:1434–1448

    Article  PubMed  Google Scholar 

  • Lee TS, Nguyen M (2001) Dynamics of subjective contour formation in the early visual cortex. Proc Natl Acad Sci U S A 98:1907–1911

    Article  PubMed  CAS  Google Scholar 

  • Li Z (1998) A neural model of contour integration in the primary visual cortex. Neural Comput 10:903–940

    Article  PubMed  CAS  Google Scholar 

  • Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci U S A 95:8945–8950

    Article  PubMed  CAS  Google Scholar 

  • Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77:24–42

    PubMed  CAS  Google Scholar 

  • Luria AR (1980) Higher cortical functions in man. Basic Books, New York

    Google Scholar 

  • McAuliffe SP, Knowlton BJ (2000) Long-term retinotopic priming in object identification. Percept Psychophys 62:953–959

    PubMed  CAS  Google Scholar 

  • McDermott KB, Roediger H III (1994) Effects of imagery on perceptual implicit memory tests. J Exp Psychol Learn Mem Cognit 20:1379–1390

    Article  CAS  Google Scholar 

  • McMains SA, Somers DC (2004) Multiple spotlights of attentional selection in human visual cortex. Neuron 42:677–686

    Article  PubMed  CAS  Google Scholar 

  • Mechelli A, Price CJ, Friston KJ, Ishai A (2004) Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb Cortex 14:1256–1265

    Article  PubMed  Google Scholar 

  • Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: Two cortical pathways. Trends Neurosci 6:414–417

    Article  Google Scholar 

  • Miyashita Y, Chang HS (1988) Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature (Lond) 331:68–70

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature (Lond) 421:370–373

    Article  PubMed  CAS  Google Scholar 

  • Mumford D (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol Cybern 66:241–251

    Article  PubMed  CAS  Google Scholar 

  • Neisser U (1967) Cognitive psychology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Neisser U (1976) Cognition and reality. Freeman, San Francisco

    Google Scholar 

  • O’Regan JK, Noe A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24:939–973; discussion 973–1031

    Article  PubMed  Google Scholar 

  • Payne BR, Lomber SG, Villa AE, Bullier J (1996) Reversible deactivation of cerebral network components. Trends Neurosci 19:535–542

    Article  PubMed  CAS  Google Scholar 

  • Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 360:781–795

    Article  PubMed  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  PubMed  CAS  Google Scholar 

  • Posner MI, Snyder CR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol 109:160–174

    PubMed  CAS  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276:821–824

    Article  PubMed  CAS  Google Scholar 

  • Ress D, Backus BT, Heeger DJ (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci 3:940–945

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci 19:1736–1753

    PubMed  CAS  Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    Article  PubMed  CAS  Google Scholar 

  • Rueckl JG, Cave KR, Kosslyn SM (1989) Why are “what” and “where” processed by separate cortical visual systems? A computational investigation. J Cognit Neurosci 1:171–186

    Article  Google Scholar 

  • Salin PA, Bullier J (1995) Cortico-cortical connections in the visual system: structure and function. Physiol Rev 75:107–154

    PubMed  CAS  Google Scholar 

  • Sandell JH, Schiller PH (1982) Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J Neurophysiol 48:38–48

    PubMed  CAS  Google Scholar 

  • Schacter DL (1996) Searching for memory. Harper Collins, New York

    Google Scholar 

  • Seghier ML, Vuilleumier P (2006) Functional neuroimaging findings on the human perception of illusory contours. Neurosci Biobehav Rev 30:595–612

    Article  PubMed  CAS  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  PubMed  CAS  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Sereno MI, Tootell RB (2005) From monkeys to humans: what do we now know about brain homologies? Curr Opin Neurobiol 15:135–144

    Article  PubMed  CAS  Google Scholar 

  • Serre T, Oliva A, Poggio T (2007) A feedforward architecture accounts for rapid categorization. Proc Natl Acad Sci USA 104:6424–6429

    Article  PubMed  CAS  Google Scholar 

  • Squire LR (1987) Memory and brain. Oxford University Press, Oxford

    Google Scholar 

  • Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Saito H, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66:170–189

    PubMed  CAS  Google Scholar 

  • Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature Lond) 401: 699–703

    Article  CAS  Google Scholar 

  • Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI (1998) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci U S A 95:811–817

    Article  PubMed  CAS  Google Scholar 

  • Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognit Psychol 12:97–136

    Article  PubMed  CAS  Google Scholar 

  • Ullman S (1989) Aligning pictorial descriptions: an approach to object recognition. Cognition 32:193–254

    Article  PubMed  CAS  Google Scholar 

  • Ullman S (1995) Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. Cereb Cortex 5:1–11

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RB, Bakircioglu M (2001) Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res 41:1359–1378

    Article  PubMed  Google Scholar 

  • Van Rullen R, Delorme A, Thorpe SJ (2001) Feed-forward contour integration in primary visual cortex based on asynchronous spike propagation. Neurocomputing 38:1003–1009

    Article  Google Scholar 

  • Vezoli J, Falchier A, Jouve B, Knoblauch K, Young M, Kennedy H (2004) Quantitative analysis of connectivity in the visual cortex: extracting function from structure. Neuroscientist 10:476–482

    Article  PubMed  Google Scholar 

  • von der Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science 224:1260–1262

    Article  PubMed  Google Scholar 

  • Wallis G, Rolls ET (1997) Invariant face and object recognition in the visual system. Prog Neurobiol 51:167–194

    Article  PubMed  CAS  Google Scholar 

  • Wilson FA, Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ganis, G., Kosslyn, S.M. (2007). Multiple Mechanisms of Top-Down Processing in Vision. In: Funahashi, S. (eds) Representation and Brain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73021-7_2

Download citation

Publish with us

Policies and ethics