Skip to main content

Large-Scale Network Dynamics in Neurocognitive Function

  • Chapter
Representation and Brain

Abstract

This chapter highlights two key concepts, neural context and catalysts, for linking neurophysiology to the mental representations in the human brain. The concepts emerge from basic structural and functional properties of the brain, properties that enable a system with an optimal capacity for information segregation and integration. The concept of neural context indicates that the regional contribution to a mental operation is shaped by the status of other interacting regions, which allows the same area to contribute to more than one operation. Regions are critical to a mental operation when they mediate the transition between two mental states. Such areas are not necessarily performing the computations, but act as behavioral catalyst facilitating the transition between network states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aertsen A, Bonhoeffer T, Kruger J (1987) Coherent activity in neuronal populations: analysis and interpretation. In: Caianiello ER (ed) Physics of cognitive processes. World Scientific, Singapore, pp 1–34

    Google Scholar 

  • Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. Nat Rev Neurosci 7:358–366

    Article  PubMed  CAS  Google Scholar 

  • Bar M (2004) Visual objects in context. Nat Rev Neurosci 5:617–629

    Article  PubMed  CAS  Google Scholar 

  • Beck DM, Kastner S (2005) Stimulus context modulates competition in human extrastriate cortex. Nat Neurosci 8:1110–1116

    Article  PubMed  CAS  Google Scholar 

  • Berns GS, Cohen JD, Mintun MA (1997) Brain regions responsive to novelty in the absence of awareness. Science 276:1272–1275

    Article  PubMed  CAS  Google Scholar 

  • Breakspear M (2004) “Dynamic” connectivity in neural systems: theoretical and empirical considerations. Neuroinformatics 2:205–226

    Article  PubMed  Google Scholar 

  • Breakspear M, Stam CJ (2005) Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc Lond B Biol Sci 360:1051–1074

    Article  PubMed  Google Scholar 

  • Breakspear M, Bullmore ET, Aquino K, Das P, Williams LM (2006) The multiscale character of evoked cortical activity. Neuroimage 30:1230–1242

    Article  PubMed  Google Scholar 

  • Bressler S (2003) Context rules. Commentary on Phillips WA & Silverstein SM: Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 26:85

    Article  Google Scholar 

  • Bressler SL (2004) Inferential constraint sets in the organization of visual expectation. Neuroinformatics 2:227–238

    Article  PubMed  Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cog Sci 5:26–36

    Article  Google Scholar 

  • Bressler S, McIntosh AR (in press) The role of neural context in large-scale neurocognitive network operations. In: Jirsa V, McIntosh AR (eds) Handbook of brain connectivity. Springer

    Google Scholar 

  • Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60:139–148

    Article  PubMed  Google Scholar 

  • Buchel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283:1538–1541

    Article  PubMed  CAS  Google Scholar 

  • Burgess PW, Shallice T (1996) Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia 34:263–272

    Article  PubMed  CAS  Google Scholar 

  • Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cognit Neurosci 12:1–47

    Article  CAS  Google Scholar 

  • Chun MM (2000) Contextual cueing of visual attention. Trends Cognit Sci 4:170–178

    Article  Google Scholar 

  • Clark CM, Squire LR (2000) Awareness and the conditioned eyeblink response. In: Woodruff-Pak DS, Steinmetz JE (eds) Eyeblink classical conditioning, vol I. Applications in humans. Kluwer, Norwell, MA, pp 229–253

    Google Scholar 

  • Clark RE, Squire LR (1998) Classical conditioning and brain systems: the role of awareness. Science 280:77–81

    Article  PubMed  CAS  Google Scholar 

  • Dayan P, Hinton GE, Neal RM, Zemel RS (1995) The Helmholtz machine. Neural Comput 7:889–904

    Article  PubMed  CAS  Google Scholar 

  • Deco G, Rolls ET (2005) Attention, short-term memory, and action selection: a unifying theory. Prog Neurobiol 76:236–256

    PubMed  Google Scholar 

  • Dorris MC, Pare M, Munoz DP (2000) Immediate neural plasticity shapes motor performance. J Neurosci 20:RC52

    PubMed  CAS  Google Scholar 

  • Edeline JM, Pham P, Weinberger NM (1993) Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav Neurosci 107:539–551

    Article  PubMed  CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (2000) Mesoscopic neurodynamics: from neuron to brain. J Physiol (Paris) 94:303–322

    CAS  Google Scholar 

  • Freeman WJ, Holmes MD (2005) Metastability, instability, and state transition in neocortex. Neural Netw 18:497–504

    Article  PubMed  Google Scholar 

  • Friston K (1994) Functional and effective connectivity: a synthesis. Hum Brain Mapping 2:56–78

    Article  Google Scholar 

  • Friston KJ (1997) Transients, metastability, and neuronal dynamics. Neuroimage 5:164–171

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Frith C, Fracowiak R (1993) Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapping 1:69–79

    Article  Google Scholar 

  • Garraux G, McKinney C, Wu T, Kansaku K, Nolte G, Hallett M (2005) Shared brain areas but not functional connections controlling movement timing and order. J Neurosci 25:5290–5297

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Haken H (1996) Principles of brain functioning: a synergetic approach to brain activity, behavior and cognition. Springer, Berlin

    Google Scholar 

  • Hanson SJ, Matsuka T, Haxby JV (2004) Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? Neuroimage 23:156–166

    Article  PubMed  Google Scholar 

  • Haxby JV, Grady CL, Horwitz B (1991) Two visual processing pathways in human extrastriate cortex mapped with positron emission tomography. In: Lassen NA, Ingvar DH, Raichle ME, Friberg L (eds) Brain work and mental activity. Alfred Benzon Symposium 31. Munksgaard, Copenhagen, pp 324–333

    Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  PubMed  CAS  Google Scholar 

  • Hepp-Reymond M, Kirkpatrick-Tanner M, Gabernet L, Qi HX, Weber B (1999) Context-dependent force coding in motor and premotor cortical areas. Exp Brain Res 128:123–133

    Article  PubMed  CAS  Google Scholar 

  • Hinton GE, Dayan P (1996) Varieties of Helmholtz machine. Neural Netw 9:1385–1403

    Article  PubMed  Google Scholar 

  • Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19:466–470

    Article  PubMed  Google Scholar 

  • Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV (1999) Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci U S A 96:9379–9384

    Article  PubMed  CAS  Google Scholar 

  • James W (1890) The principles of psychology. Dover, Boston

    Google Scholar 

  • Jirsa VK, Kelso JA (2000) Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 62:8462–8465

    CAS  Google Scholar 

  • Kanwisher N, McDermott J, Chun M (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    PubMed  CAS  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kleist K (1935) Ueber Form und Orstsblindheit bei Verletzungen des Hinterhautlappens. Dtsch Z Nervenheilkd 138:206–214

    Article  Google Scholar 

  • Knight RT, Grabowecky MF, Scabini D (1995) Role of human prefrontal cortex in attention control. Adv Neurol 66:21–34

    PubMed  CAS  Google Scholar 

  • Kristan WB Jr, Shaw BK (1997) Population coding and behavioral choice. Curr Opin Neurobiol 7:826–831

    Article  PubMed  Google Scholar 

  • Lenartowicz A, McIntosh AR (2005) The role of anterior cingulate cortex in working memory is shaped by functional connectivity. J Cognit Neurosci 17:1026–1042

    Article  Google Scholar 

  • McElree B (2001) Working memory and focal attention. J Exp Psychol Learning Memory Cognit 27:817–835

    Article  CAS  Google Scholar 

  • McIntosh AR (1999) Mapping cognition to the brain through neural interactions. Memory 7:523–548

    Article  PubMed  CAS  Google Scholar 

  • McIntosh AR (2000) From location to integration: How neural interactions form the basis for human cognition. In: Tulving E (ed) Memory, consciousness, and the brain: The Tallinn Conference. Psychology Press, Philadelphia

    Google Scholar 

  • McIntosh AR (2004) Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2:175–182

    Article  PubMed  Google Scholar 

  • McIntosh AR (in press) Mesoscale brain dynamics. In: Roediger HL, Dudai Y, Fitzpatrick S (eds) Memory coding and representation. Science of memory: concepts. Oxford University Press, New York

    Google Scholar 

  • McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapping 2:2–22

    Article  Google Scholar 

  • McIntosh AR, Cabeza RE, Lobaugh NJ (1998) Analysis of neural interactions explains the activation of occipital cortex by an auditory stimulus. J Neurophysiol 80:2790–2796

    PubMed  CAS  Google Scholar 

  • McIntosh AR, Rajah MN, Lobaugh NJ (1999) Interactions of prefrontal cortex related to awareness in sensory learning. Science 284:1531–1533

    Article  PubMed  CAS  Google Scholar 

  • McIntosh AR, Rajah MN, Lobaugh NJ (2003) Functional connectivity of the medial temporal lobe relates to learning and awareness. J Neurosci 23:6520–6528

    PubMed  CAS  Google Scholar 

  • Milton JG, Mackey MC (2000) Neural ensemble coding and statistical periodicity: speculations on the operation of the mind’s eye. J Physiol (Paris) 94:489–503

    CAS  Google Scholar 

  • O’Toole AJ, Jiang F, Abdi H, Haxby JV (2005) Partially distributed representations of objects and faces in ventral temporal cortex. J Cognit Neurosci 17:580–590

    Article  Google Scholar 

  • Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3:606–616

    PubMed  CAS  Google Scholar 

  • Pasupathy A, Connor CE (2002) Population coding of shape in area V4. Nat Neurosci 5:1332–1338

    Article  PubMed  CAS  Google Scholar 

  • Popescu IR, Frost WN (2002) Highly dissimilar behaviors mediated by a multifunctional network in the marine mollusk Tritonia diomedea. J Neurosci 22:1985–1993

    PubMed  CAS  Google Scholar 

  • Spiridon M, Kanwisher N (2002) How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron 35:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Sporns O, Kotter R (2004) Motifs in brain networks. PLoS Biol 2:e369

    Article  PubMed  Google Scholar 

  • Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162

    Article  PubMed  Google Scholar 

  • Stephan KE, Marshall JC, Friston KJ, Rowe JB, Ritzl A, Zilles K, Fink GR (2003) Lateralized cognitive processes and lateralized task control in the human brain. Science 301:384–386

    Article  PubMed  CAS  Google Scholar 

  • Stuss DT, Benson DF (1987) The frontal lobes and control of cognition and memory. In: Perecman E (ed) The frontal lobes revisited. IRBN Press, New York, pp 141–158

    Google Scholar 

  • Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42

    Article  PubMed  Google Scholar 

  • Tononi G (2005) Consciousness, information integration, and the brain. Prog Brain Res 150:109–126

    Article  PubMed  Google Scholar 

  • Tononi G, Sporns O (2003) Measuring information integration. BMC Neurosci 4:31

    Article  PubMed  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1992) Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb Cortex 2:310–335

    Article  PubMed  CAS  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure of brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037

    Article  PubMed  CAS  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci U S A 96:3257–3262

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–1726

    Article  PubMed  Google Scholar 

  • Wolpaw JR (1997) The complex structure of a simple memory. Trends Neurosci 20:588–594

    Article  PubMed  CAS  Google Scholar 

  • Wu JY, Cohen LB, Falk CX (1994) Neuronal activity during different behaviors in Aplysia: a distributed organization? Science 263:820–823

    Article  PubMed  CAS  Google Scholar 

  • Young MP, Yamane S (1992) Sparse population coding of faces in the inferotemporal cortex. Science 256:1327–1331

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

McIntosh, A.R. (2007). Large-Scale Network Dynamics in Neurocognitive Function. In: Funahashi, S. (eds) Representation and Brain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73021-7_14

Download citation

Publish with us

Policies and ethics