Skip to main content

Prefrontal Representations Underlying Goal-Directed Behavior

  • Chapter
Representation and Brain

Abstract

An important function of prefrontal cortex is the control and organization of goal-directed behavior. This chapter will examine the neuronal mechanisms that underlie this function. One can broadly group these mechanisms according to their level of abstraction. At the simplest level are behaviors directed towards basic goals of homeostatic maintenance, for example maximizing energy intake or minimizing energy expenditure. Prefrontal neurons represent the expected outcomes of actions directed towards such goals. At a more complex level, prefrontal neurons encode representations of arbitrary relationships in the world, such as those between specific sensory stimuli and specific actions. For example, knowledge that a red traffic light means stop, while green means go. Finally, at the most abstract level prefrontal neurons represent rules and concepts, such as number or similarity. Taken together these representations ensure optimal action selection, so that behavior efficiently satisfies one’s goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson AK, Christoff K, Stappen I, Panitz D, Ghahremani DG, Glover G, Gabrieli JD, Sobel N (2003) Dissociated neural representations of intensity and valence in human olfaction. Nat Neurosci 6:196–202

    Article  PubMed  CAS  Google Scholar 

  • Aron AR, Monsell S, Sahakian BJ, Robbins TW (2004) A componential analysis of task-switching deficits associated with lesions of left and right frontal cortex. Brain 127:1561–1573

    Article  PubMed  Google Scholar 

  • Asaad WF, Rainer G, Miller EK (1998) Neural activity in the primate prefrontal cortex during associative learning. Neuron 21:1399–1407

    Article  PubMed  CAS  Google Scholar 

  • Asaad WF, Rainer G, Miller EK (2000) Task-specific neural activity in the primate prefrontal cortex. J Neurophysiol 84:451–459

    PubMed  CAS  Google Scholar 

  • Barbas H, Pandya D (1991) Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. In: Levin HS, Eisenberg HM, Benton AL (eds) Frontal lobe function and dysfunction. Oxford University Press, New York, pp 35–58

    Google Scholar 

  • Baxter MG, Parker A, Lindner CC, Izquierdo AD, Murray EA (2000) Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci 20:4311–4319

    PubMed  CAS  Google Scholar 

  • Baylis LL, Gaffan D (1991) Amygdalectomy and ventromedial prefrontal ablation produce similar deficits in food choice and in simple object discrimination learning for an unseen reward. Exp Brain Res 86:617–622

    Article  PubMed  CAS  Google Scholar 

  • Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50:7–15

    Article  PubMed  CAS  Google Scholar 

  • Carmichael ST, Price JL (1995a) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    Article  PubMed  CAS  Google Scholar 

  • Carmichael ST, Price JL (1995b) Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 363:642–664

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature (Lond) 380:69–72

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1997) Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on-line” processing. J Neurosci 17:9285–9297

    PubMed  CAS  Google Scholar 

  • Dreher JC, Berman KF (2002) Fractionating the neural substrate of cognitive control processes. Proc Natl Acad Sci U S A 99:14595–14600

    Article  PubMed  CAS  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    Article  PubMed  CAS  Google Scholar 

  • Eacott MJ, Gaffan D (1992) Inferotemporal-frontal disconnection: the uncinate fascicle and visual associative learning in monkeys. Eur J Neurosci 4:1320–1332

    Article  PubMed  Google Scholar 

  • Eslinger PJ, Damasio AR (1985) Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35:1731–1741

    PubMed  CAS  Google Scholar 

  • Fellows LK, Farah MJ (2005) Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb Cortex 15:58–63

    Article  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    PubMed  CAS  Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    Article  PubMed  CAS  Google Scholar 

  • Gaffan D, Easton A, Parker A (2002) Interaction of inferior temporal cortex with frontal cortex and basal forebrain: double dissociation in strategy implementation and associative learning. J Neurosci 22:7288–7296

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F (ed) Handbook of physiology: the nervous system, higher functions of the brain. American Physiological Society, Bethesda, MD, pp 373–417

    Google Scholar 

  • Gottfried JA, O’Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–1107

    Article  PubMed  CAS  Google Scholar 

  • Grueninger WE, Pribram KH (1969) Effects of spatial and nonspatial distractors on performance latency of monkeys with frontal lesions. J Comp Physiol Psychol 68:203–209

    Article  PubMed  CAS  Google Scholar 

  • Hoshi E, Shima K, Tanji J (1998) Task-dependent selectivity of movement-related neuronal activity in the primate prefrontal cortex. J Neurophysiol 80:3392–3397

    PubMed  CAS  Google Scholar 

  • Hoshi E, Shima K, Tanji J (2000) Neuronal activity in the primate prefrontal cortex in the process of motor selection based on two behavioral rules. J Neurophysiol 83:2355–2373

    PubMed  CAS  Google Scholar 

  • Kahneman D, Tversky A (2000) Choices, values and frames. Cambridge University Press, New York

    Google Scholar 

  • Kawasaki H, Kaufman O, Damasio H, Damasio AR, Granner M, Bakken H, Hori T, Howard MA III, Adolphs R (2001) Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nat Neurosci 4:15–16

    Article  PubMed  CAS  Google Scholar 

  • Kennerley SW, Lara AH, Wallis JD (2005) Prefrontal neurons encode an abstract representation of value. Society for Neuroscience, Washington, DC

    Google Scholar 

  • Knight RT (1984) Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin Neurophysiol 59:9–20

    Article  PubMed  CAS  Google Scholar 

  • Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34:337–347

    PubMed  CAS  Google Scholar 

  • Leon MI, Shadlen MN (1999) Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24:415–425

    Article  PubMed  CAS  Google Scholar 

  • Lhermitte F, Pillon B, Serdaru M (1986) Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: a neuropsychological study of 75 patients. Ann Neurol 19:326–334

    Article  PubMed  CAS  Google Scholar 

  • Lurchins AS (1942) Mechanization in problem solving. Psychol Monogr 54

    Google Scholar 

  • Maunsell JH (2004) Neuronal representations of cognitive state: reward or attention? Trends Cognit Sci 8:261–265

    Article  Google Scholar 

  • Middleton FA, Strick PL (1996) The temporal lobe is a target of output from the basal ganglia. Proc Natl Acad Sci U S A 93:8683–8687

    Article  PubMed  CAS  Google Scholar 

  • Milner B (1963) Effects of different brain lesions on card sorting. Arch Neurol 9:100–110

    Google Scholar 

  • Monsell S (2003) Task switching. Trends Cognit Sci 7:134–140

    Article  Google Scholar 

  • Montague PR, Berns GS (2002) Neural economics and the biological substrates of valuation. Neuron 36:265–284

    Article  PubMed  CAS  Google Scholar 

  • Norman DA, Shallice T (1986) Attention to action: willed and automatic control of behaviour. In: Schwartz GE (ed) Consciousness and self-regulation. Plenum Press, New York

    Google Scholar 

  • O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4:95–102

    Article  PubMed  Google Scholar 

  • Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode economic value. Nature (Lond) 441(7090):223–226

    Article  PubMed  CAS  Google Scholar 

  • Pandya DN, Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. Prog Brain Res 85:63–94

    Article  PubMed  CAS  Google Scholar 

  • Parker A, Gaffan D (1998) Memory after frontal/temporal disconnection in monkeys: conditional and non-conditional tasks, unilateral and bilateral frontal lesions. Neuropsychologia 36:259–271

    Article  PubMed  CAS  Google Scholar 

  • Pasupathy A, Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature (Lond) 433:873–876

    Article  PubMed  CAS  Google Scholar 

  • Petrides M (1985) Deficits on conditional associative-learning tasks after frontal-and temporal-lobe lesions in man. Neuropsychologia 23:601–614

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036

    Article  PubMed  CAS  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276:821–824

    Article  PubMed  CAS  Google Scholar 

  • Reading PJ, Dunnett SB, Robbins TW (1991) Dissociable roles of the ventral, medial and lateral striatum on the acquisition and performance of a complex visual stimulusresponse habit. Behav Brain Res 45:147–161

    Article  PubMed  CAS  Google Scholar 

  • Roberts AC, Wallis JD (2000) Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb Cortex 10:252–262

    Article  PubMed  CAS  Google Scholar 

  • Roesch MR, Olson CR (2004) Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304:307–310

    Article  PubMed  CAS  Google Scholar 

  • Roesch MR, Olson CR (2005) Neuronal activity in primate orbitofrontal cortex reflects the value of time. J Neurophysiol 94:2457–2471

    Article  PubMed  Google Scholar 

  • Rolls ET, Sienkiewicz ZJ, Yaxley S (1989) Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur J Neurosci 1:53–60

    Article  PubMed  Google Scholar 

  • Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57:1518–1524

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Critchley HD, Mason R, Wakeman EA (1996) Orbitofrontal cortex neurons: role in olfactory and visual association learning. J Neurophysiol 75:1970–1981

    PubMed  CAS  Google Scholar 

  • Rolls ET, Critchley HD, Browning AS, Hernadi I, Lenard L (1999) Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J Neurosci 19:1532–1540

    PubMed  CAS  Google Scholar 

  • Rolls ET, O’Doherty J, Kringelbach ML, Francis S, Bowtell R, McGlone F (2003) Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex 13:308–317

    Article  PubMed  CAS  Google Scholar 

  • Royet JP, Zald D, Versace R, Costes N, Lavenne F, Koenig O, Gervais R (2000) Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J Neurosci 20:7752–7759

    PubMed  CAS  Google Scholar 

  • Sakagami M, Niki H (1994a) Encoding of behavioral significance of visual stimuli by primate prefrontal neurons: relation to relevant task conditions. Exp Brain Res 97:423–436

    Article  PubMed  CAS  Google Scholar 

  • Sakagami M, Niki H (1994b) Spatial selectivity of go/no-go neurons in monkey prefrontal cortex. Exp Brain Res 100:165–169

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Passingham RE (2003) Prefrontal interactions reflect future task operations. Nat Neurosci 6:75–81

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Passingham RE (2006) Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. J Neurosci 26:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci 1:155–159

    Article  PubMed  CAS  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci 19:1876–1884

    PubMed  CAS  Google Scholar 

  • Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M (2003) Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn Mem 10:129–140

    Article  PubMed  Google Scholar 

  • Sohn MH, Ursu S, Anderson JR, Stenger VA, Carter CS (2000) Inaugural article: the role of prefrontal cortex and posterior parietal cortex in task switching. Proc Natl Acad Sci U S A 97:13448–13453

    Article  PubMed  CAS  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Thorpe SJ, Rolls ET, Maddison S (1983) The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res 49:93–115

    Article  PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (2000a) Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. J Neurophysiol 83:1877–1885

    PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (2000b) Reward-related neuronal activity during go-no go task performance in primate orbitofrontal cortex. J Neurophysiol 83:1864–1876

    PubMed  CAS  Google Scholar 

  • Ungerleider LG, Gaffan D, Pelak VS (1989) Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Exp Brain Res 76: 473–484

    Article  PubMed  CAS  Google Scholar 

  • Wallis JD, Miller EK (2003) Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur J Neurosci 18:2069–2081

    Article  PubMed  Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2001a) Single neurons in prefrontal cortex encode abstract rules. Nature (Lond) 411:953–956

    Article  PubMed  CAS  Google Scholar 

  • Wallis JD, Dias R, Robbins TW, Roberts AC (2001b) Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. Eur J Neurosci 13:1797–1808

    Article  PubMed  CAS  Google Scholar 

  • Walton ME, Bannerman DM, Rushworth MF (2002) The role of rat medial frontal cortex in effort-based decision making. J Neurosci 22:10996–11003

    PubMed  CAS  Google Scholar 

  • Watanabe M (1986a) Prefrontal unit activity during delayed conditional go/no-go discrimination in the monkey. I. Relation to the stimulus. Brain Res 382:1–14

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M (1986b) Prefrontal unit activity during delayed conditional go/no-go discrimination in the monkey. II. Relation to go and no-go responses. Brain Res 382:15–27

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Nature (Lond) 382:629–632

    Article  PubMed  CAS  Google Scholar 

  • White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126:315–335

    Article  PubMed  CAS  Google Scholar 

  • Yaxley S, Rolls ET, Sienkiewicz ZJ (1988) The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiol Behav 42:223–229

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wallis, J.D. (2007). Prefrontal Representations Underlying Goal-Directed Behavior. In: Funahashi, S. (eds) Representation and Brain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73021-7_12

Download citation

Publish with us

Policies and ethics