Visual Perception of Contextual Effect and Its Neural Correlates

  • Yoshimichi Ejima
  • Shigeko Takahashi
  • Hiroki Yamamoto
  • Naokazu Goda


We investigated contextual effect in the visual perception using fMRI measurements. First, we examined spatiotemporal pattern of response modulation in human V1, V2 and V3/VP during contextual modulation of perceptual contrast using fMRI. Analysis of the spatial distribution of the response modulation indicated that multiple neural processes underlie the contextual effects. A long-range interaction that is selective to relative orientation may contribute predominantly to the suppressive response modulation in V1 and V2. Second, we examined higher-level contextual effect in the visual perception. We investigated the neural mechanisms of meaning generation from visual inputs, including Rorschach inkblots, using fMRI. Significant activity was observed in the prefrontal cortex together with distributed regions in the parietal and occipital cortices. The activated brain regions included the memory system for visual information and the spatial processing in visually guided eye movement in the brain. The results provide a clue to identify the brain regions responsible for the thought disorders and eye movement abnormalities of schizophrenia.


Naming Task Primary Visual Cortex Test Region Inferior Temporal Gyrus Passive Viewing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for timecourse data sets in functional MRI of the human brain. Magn Reson Med 30:161–173PubMedCrossRefGoogle Scholar
  2. Baudewig J, Dechent P, Merboldt KD, Frahm J (2003) Thresholding in correlation analyses of magnetic resonance functional neuroimaging. Magn Reson Imag 21:1121–1130CrossRefGoogle Scholar
  3. Blaxton T (1999) Cognition: memory, 2. Conceptual and perceptual memory. Am J Psychiatry 156:1676PubMedGoogle Scholar
  4. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221PubMedGoogle Scholar
  5. Buckner RL, Koutstaal W, Schacter DL, Rosen BR (2000) Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming. Brain 123:620–640PubMedCrossRefGoogle Scholar
  6. Cannon MW, Fullenkamp SC (1991) Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Res 31:1985–1998PubMedCrossRefGoogle Scholar
  7. Clementz BA, Sweeney JA (1990) Is eye movement dysfunction a biological marker for schizophirenia? A methodological review. Psychol Bull 108:77–92PubMedCrossRefGoogle Scholar
  8. Damasio H (1990) Human brain anatomy in computerized images. Oxford University Press, New YorkGoogle Scholar
  9. De Beek HO, Beatse E, Wagemans J, Sunaert S, Hecke P (2000) The representation of shape in the context of visual object categorization tasks. Neuroimage 12:28–40CrossRefGoogle Scholar
  10. Ejima Y, Takahashi S (1985) Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings. Vision Res 25:1223–1232PubMedCrossRefGoogle Scholar
  11. Ejima Y, Takahashi S, Yamamoto H, Fukunaga M, Tanaka C, Ebisu T, Umeda M (2003) Interindividual and interspecies variations of the extrastriate visual cortex. Neuro-Report 14:1579–1583Google Scholar
  12. Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192PubMedCrossRefGoogle Scholar
  13. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky, EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature (Lond) 369:525PubMedCrossRefGoogle Scholar
  14. Fukuzako H, Sugimoto H, Takigawa M (2002) Eye movements during the Rorschach test in schizophrenia. Psychiatry Clin Neurosci 56:409–418PubMedCrossRefGoogle Scholar
  15. Furmanski CS, Engel SA (2000) An oblique effect in human primary visual cortex. Nat Neurosci 3:535–536PubMedCrossRefGoogle Scholar
  16. Gill HS, O’Boyle MW (2003) Generating an image from an ambiguous visual input: an electroencephalographic (EEG) investigation. Brain Cognit 51:287–293CrossRefGoogle Scholar
  17. Kastner S, Nothdurft H, Pigarev IN (1997) Neuronal correlates of pop-out in cat striate cortex. Vision Res 37:371–376PubMedCrossRefGoogle Scholar
  18. Kastner S, De Weerd P, Desimone R, Ungerleider LG (1998) Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282:108–111PubMedCrossRefGoogle Scholar
  19. Kastner S, De Weerd P, Pinsk MA, Elizondo MI, Desimone R, Ungerleider LG (2001) Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. J Neurophysiol 86:1398–1411PubMedGoogle Scholar
  20. Kircher TTJ, Brammer MJ, Williams SCR, McGuire PK (2000) Lexical retrieval during fluent speech production: an fMRI study. NeuroReport 11:4093–4096PubMedCrossRefGoogle Scholar
  21. Knierim JJ, Van Essen DC (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol 67:961–980PubMedGoogle Scholar
  22. Lamme VAF (1995) The neurophysiology of figure-ground segregation in primary visual cortex. J Neurosci 15:1605–1615PubMedGoogle Scholar
  23. Levitt JB, Lund JS (1997) Contrast dependence of contextual effects in primate visual cortex. Nature (Lond) 387:73–76PubMedCrossRefGoogle Scholar
  24. Merriam EP, Colby CL, Thulborn KR, Luna B, Olson CR, Sweeney JA (2001) Stimulusresponse incompatibility activates cortex proximate to three eye fields. Neuroimage 13:794–800PubMedCrossRefGoogle Scholar
  25. Ohtani Y, Okamura S, Yoshida Y, Toyama K, Ejima Y (2002) Surround suppression in the human visual cortex: an analysis using magnetoencephalography. Vision Res 42:1825–1835PubMedCrossRefGoogle Scholar
  26. Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci 19:1736–1753PubMedGoogle Scholar
  27. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893PubMedCrossRefGoogle Scholar
  28. Sillito AM, Grieve KL, Jones HE, Cudeiro J, Davis J (1995) Visual cortical mechanisms detecting focal orientation discontinuities. Nature (Lond) 378:492–496PubMedCrossRefGoogle Scholar
  29. Smith AT, Singh KD, Williams AL, Greenlee MW (2001) Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. Cereb Cortex 11: 1182–1190PubMedCrossRefGoogle Scholar
  30. Sweeney JA, Luna B, Srinivasagam NM, Keshavan MS, Schooler NR, Haas GL, Carl JR (1998) Eye tracking abnormalities in schizophrenia: evidence for dysfunction in the frontal eye field. Biol Psychiatry 44:698–708PubMedCrossRefGoogle Scholar
  31. Takeuchi T, De Valois KK (2000) Modulation of perceived contrast by a moving surround. Vision Res 40:2697–2709PubMedCrossRefGoogle Scholar
  32. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  33. Toth TJ, Rao SC, Kim DS, Somers D, Sur M (1996) Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc Natl Acad Sci U S A 93:9869–9874PubMedCrossRefGoogle Scholar
  34. Vogels R, Sary G, Dupont P, Orban GA (2002) Human brain regions involved in visual categorization. Neuroimage 16:401–414PubMedCrossRefGoogle Scholar
  35. Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16:620–633PubMedCrossRefGoogle Scholar
  36. Xing J, Heeger DJ (2000) Center-surround interactions in foveal and peripheral vision. Vision Res 40:3065–3072PubMedCrossRefGoogle Scholar
  37. Zenger-Landolt B, Heeger DJ (2003) Response suppression in V1 agrees with psychophysics of surround masking. J Neurosci 23:6884–6893PubMedGoogle Scholar
  38. Zipser K, Lamme VAF, Schiller PH (1996) Contextual modulation in primary visual cortex. J Neurosci 16:7376–7389PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Yoshimichi Ejima
    • 1
  • Shigeko Takahashi
    • 2
  • Hiroki Yamamoto
    • 3
  • Naokazu Goda
    • 4
  1. 1.Kyoto Institute of TechnologyKyotoJapan
  2. 2.Department of Fine ArtsKyoto City University of ArtsKyotoJapan
  3. 3.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
  4. 4.National Institute for Physiological SciencesOkazaki, AichiJapan

Personalised recommendations