Skip to main content

Prior Knowledge and Learning in 3D Object Recognition

  • Chapter
Object Recognition, Attention, and Action

Abstract

Biological 3D object recognition is restricted to the sensing of 2D projections, or images, and is further constrained by the lack of transparency. The most common assumption then is that image data are referenced to mental object representations. Such representations, or object models, must be contrasted with object recognition in so far as the latter involves the understanding of image data. This distinction is central to recognition-by-components (RBC; Biederman 1987), a theory of human image understanding based on the assumption that input images are parsed into regions that display nonaccidental properties of edges. These properties provide critical constraints on the identity of 3D primitives (“geons”) the images come from, e.g., cylinders, blocks, wedges, and cones, and are (relatively) invariant with viewpoint and image degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballard DH, Brown CM (1982) Computer vision. Prentice Hall, Englewood Cliffs NJ

    Google Scholar 

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115–147

    Article  PubMed  CAS  Google Scholar 

  • Biederman I, Cooper EE (1991) Priming contour-deleted images: evidence for intermediate representations in visual object recognition. Cognit Psychol 23:393–419

    Article  PubMed  CAS  Google Scholar 

  • Biederman I, Gerhardstein PC (1993) Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. J Exp Psychol 19:1162–1182

    CAS  Google Scholar 

  • Bülthoff H, Edelman S (1992) Psychophysical support for a two-dimensional view interpolation theory of object recognition. Proc Natl Acad Sci USA 89:60–64

    Article  PubMed  Google Scholar 

  • Caelli T, Bischof WF (1997) Machine learning and image interpretation. Plenum Press, New York

    Google Scholar 

  • Christou C, Bülthoff HH (2000) Perception, representation and recognition: a holistic view of recognition. Spat Vis 13:265–276

    Article  PubMed  CAS  Google Scholar 

  • Cooper LA, Schacter DL, Ballesteros S, Moore C (1992) Priming and recognition of transformed three-dimensional objects: effects of size and reflection. J Exp Psychol Learn Mem Cogn 18:43–57

    Article  PubMed  CAS  Google Scholar 

  • Critchley M (1953) The parietal lobes. Edward Arnold, London

    Google Scholar 

  • Dickinson SJ (1993) Part-based modeling and qualitative recognition. In: Jain AK, Flynn PJ (Eds) Three-dimensional object recognition systems. Elsevier, Amsterdam, pp 201–228

    Google Scholar 

  • Edelman S, Bülthoff HH (1992) Orientation dependence in the recognition of familiar and novel views of 3D objects. Vision Res 32:2385–4000

    Article  PubMed  CAS  Google Scholar 

  • Gauthier I, Hayward WG, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (2002) BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron 34:161–171

    Article  PubMed  CAS  Google Scholar 

  • Gschwind M, Brettel H, Osman E, Rentschler I (2004) Structured but view-dependent representation for visual 3-D object classification. Perception 33(Suppl):73

    Google Scholar 

  • Haykin S (1999) Neural networks. Prentice Hall, Upper Saddle River NJ

    Google Scholar 

  • Hummel JE (2001) Complementary solutions to the binding problem in vision: implications for shape perception and object recognition. Vis Cogn 8:489–517

    Article  Google Scholar 

  • Hummel JE, Biederman I (1992) Dynamic binding in a neural network for shape recognition. Psychol Rev 99:480–517

    Article  PubMed  CAS  Google Scholar 

  • Johnson KE, Mervis CB (1997) Effects of varying levels of expertise on the basic level of categorization. J Exp Psychol Gen 126:248–277

    Article  PubMed  CAS  Google Scholar 

  • Korn GA, Korn TM (1968) Mathematical handbook for scientists and engineers. McGraw-Hill, New York, Section 14.10

    Google Scholar 

  • Liu Z (1996) Viewpoint dependency in object representation and recognition. Spat Vis 9:491–521

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Knill DC, Kersten D (1995) Object classification for human and ideal observers. Vision Res 35:549–568

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Kersten D, Knill DC (1999) Dissociating stimulus information from internal representation — a case study in object recognition. Vision Res 39:603–612

    Article  PubMed  CAS  Google Scholar 

  • Marr D, Nishihara HK (1978) Representation and recognition of the spatial organisation of three-dimensional shapes. Proc R Soc Lond B 200:269–294

    Article  PubMed  CAS  Google Scholar 

  • Osman E, Pearce AR, Jüttner M, Rentschler I (2000) Reconstructing mental object representations: a machine vision approach to human visual recognition. Spat Vis 13:277–286

    Article  PubMed  CAS  Google Scholar 

  • Pizlo Z (2001) Perception viewed as an inverse problem. Vision Res 41:3145–3161

    Article  PubMed  CAS  Google Scholar 

  • Rentschler I, Jüttner M (2007) Mirror-image relations in category learning. Vis Cogn 15:211–237

    Article  Google Scholar 

  • Rentschler I, Barth E, Caelli T, Zetzsche C, Jüttner M (1996) Generalization of form in visual pattern classification. Spat Vis 10:59–85

    Article  PubMed  CAS  Google Scholar 

  • Rentschler I, Jüttner M, Osman E, Müller A, Caelli T (2004) Development of configural 3D object recognition. Behav Brain Res 149:107–111

    Article  PubMed  Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–703

    Article  PubMed  CAS  Google Scholar 

  • Tanaka JW, Taylor M (1991) Object categories and expertise: is the basic level in the eye of the beholder? Cognit Psychol 23:457–482

    Article  Google Scholar 

  • Tarr M (1995) Rotating objects to recognize them: a case study of the role of viewpoint dependency in the recognition of three-dimensional objects. Psychonom Bull Rev 2:55–82

    Google Scholar 

  • Tarr MJ, Pinker SM (1989) Mental rotation and orientation dependence in shape recognition. Cognit Psychol 21:233–282

    Article  PubMed  CAS  Google Scholar 

  • Thoma V, Hummel JE, Davidoff J (2004) Evidence for holistic representations of ignored images and analytic representations of attended images. J Exp Psychol 30:257–267

    Google Scholar 

  • Tjan BS, Legge GE (1998) The viewpoint complexity of an object-recognition task. Vision Res 38:2335–2350

    Article  PubMed  CAS  Google Scholar 

  • Zangaladze A, Epstein CM, Grafton S, Sathian K (1999) Involvement of visual cortex in tactile discrimination of orientation. Nature 401:587–590

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Gschwind, M., Brettel, H., Rentschler, I. (2007). Prior Knowledge and Learning in 3D Object Recognition. In: Osaka, N., Rentschler, I., Biederman, I. (eds) Object Recognition, Attention, and Action. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73019-4_8

Download citation

Publish with us

Policies and ethics