Skip to main content

Part-Based Strategies for Visual Categorisation and Object Recognition

  • Chapter
Object Recognition, Attention, and Action
  • 720 Accesses

Abstract

Approaches to object recognition that rely on structural, or part-based, descriptions have a long-standing tradition in research on both computer and biological vision. Originally developed in the field of computer graphics, Binford (1971) was among the first to suggest that similar representations might be used by biological systems for object recognition. According to this author, such representations could be based on certain three-dimensional (3D) part primitives termed “generalized cones”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashby FG (1989) Stochastic general recognition theory. In: Vickers D, Smith PL (Eds) Human information processing: measures, mechanisms, and models. Elsevier, Amsterdam, pp 435–457

    Google Scholar 

  • Biederman I (1972) Perceiving real-world scenes. Science 177:77–80

    Article  PubMed  CAS  Google Scholar 

  • Biederman I (1981) On the semantics of a glance at a scene. In: Kubovy M, Pomerantz RJ (Eds) Perceptual organization. Erlbaum, Hillsdale NJ, pp 213–253

    Google Scholar 

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115–147

    Article  PubMed  CAS  Google Scholar 

  • Binford T (1971) Visual perception by computer. Proceedings, IEEE conference on systems and control. Miami, FL

    Google Scholar 

  • Bischof WF, Caelli T (1997) SURE: scene understanding by rule evaluation. IEEE Trans Patt Anal Machine Intell 19:1284–1288

    Article  Google Scholar 

  • Bunke H (2000) Graph matching for visual object recognition. Spat Vis 13:335–340

    Article  PubMed  CAS  Google Scholar 

  • Caelli T, Dreier A (1994) Variations on the evidence-based object recognition theme. Pattern Recogn 27:1231–1248

    Article  Google Scholar 

  • Chun MM, Jiang Y (1998) Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cogn Psychol 36:28–71

    Article  PubMed  CAS  Google Scholar 

  • De Graef P, Christiaens D, d’Ydewalle G (1990) Perceptual effects of scene context on object identification. Psychol Res 52:317–329

    Article  PubMed  Google Scholar 

  • Edelman S, Intrator N (2000) Coarse coding of shape fragments) + (retinotopy) ≈ representation of structure. Spat Vis 13:255–264

    Article  PubMed  CAS  Google Scholar 

  • Fan T, Medioni R, Nevatia R (1989) Recognizing 3-D objects using surface descriptions. IEEE Trans Patt Anal Machine Intell 11:1140–1156

    Article  Google Scholar 

  • Farah MJ, Wilson KD, Drain M, Tanaka JW (1998) What is “special” about face perception? Psychol Rev 105:482–498

    Article  PubMed  CAS  Google Scholar 

  • Foster DH, Gilson SJ (2002) Recognizing novel three-dimensional objects by summing signals from parts and views. Proc R Soc Lond B 269:1939–1947

    Article  Google Scholar 

  • Gauthier I, Tarr MJ (2002) Unraveling mechanisms for expert object recognition: bridging brain and behavior. J Exp Psychol Hum 28:431–446

    Article  Google Scholar 

  • Gross CG, Bornstein MH (1978) Left and right in science and art. Leonardo 11:29–38

    Article  Google Scholar 

  • Haywood WG (2003) After the viewpoint debate: where next in object recognition. Trends Cogn Sci 7:425–427

    Article  Google Scholar 

  • Henderson JM, Weeks PA, Hollingworth A (1999) The effects of semantic consistency on eye movements during complex viewing. J Exp Psychol Hum 25:210–228

    Article  Google Scholar 

  • Hummel JE (2001) Complementary solutions to the binding problem in vision: implications for shape perception and object recognition. Vis Cogn 8:489–517

    Article  Google Scholar 

  • Hummel JE, Biederman I (1992) Dynamic binding in a neural network for shape recognition. Psychol Rev 99:480–517

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Hoffman R (1988) Evidence-based recognition of 3-D objects. IEEE Trans Patt Anal Machine Intell 10:783–802

    Article  Google Scholar 

  • Johnson KE, Mervis CB (1997) Effects of varying levels of expertise on the basic level of categorization. J Exp Psychol Gen 126:248–277

    Article  PubMed  CAS  Google Scholar 

  • Jüttner M, Rentschler I (1996) Reduced perceptual dimensionality in extrafoveal vision. Vision Res 36:1007–1022

    Article  PubMed  Google Scholar 

  • Jüttner M, Caelli T, Rentschler I (1997) Evidence-based pattern recognition: a structural approach to human perceptual learning and generalization. J Math Psychol 41:244–258

    Article  Google Scholar 

  • Jüttner M, Langguth B, Rentschler I (2004) The impact of context on pattern category learning and representation. Vis Cogn 11:921–945

    Article  Google Scholar 

  • Marr D (1976) Early processing of visual information. Philos T Roy Soc B 275:483–524

    Article  CAS  Google Scholar 

  • Marr D, Nishihara HK (1978) Representation and recognition of the spatial organization of three-dimensional shapes. Proc R Soc Lond B 200:269–294

    Article  PubMed  CAS  Google Scholar 

  • Medin DL, Schaffer MM (1978) Context theory of classification learning. Psychol Rev 85:207–238

    Article  Google Scholar 

  • Morris RK (1994) Lexical and message level sentence context effects of fixation times in reading. J Exp Psychol Learn 20:92–103

    Article  CAS  Google Scholar 

  • Nosofsky RM (1986) Attention, similarity, and the identification-categorization relationship. J Exp Psychol Gen 115:39–57

    Article  PubMed  CAS  Google Scholar 

  • Palmer SE (1975) The effects of contextual scenes on the identification of objects. Mem Cogn 3:519–526

    Google Scholar 

  • Pearce AR, Caelli T (1999) Interactively matching hand-drawings using induction. Comput Vis Image Underst 73:391–403

    Article  Google Scholar 

  • Pinker S (1984) Visual cognition: an introduction. Cognition 18:1–63

    Article  PubMed  CAS  Google Scholar 

  • Poggio T, Edelman S (1990) A network that learns to recognize three-dimensional objects. Nature 343:263–266

    Article  PubMed  CAS  Google Scholar 

  • Reed SK (1972) Pattern recognition and categorization. Cogn Psychol 3:382–407

    Article  Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in the cortex. Nat Neurosci 2:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Rivlin E, Dickenson S, Rosenfeld A (1995) Recognition by functional parts. Comput Vis Image Underst 62:164–176

    Article  Google Scholar 

  • Rosch E (1978) Principles of categorization. In: Rosch E, Lloyd B (Eds) Cognition and categorization. Erlbaum, Hillsdale NJ, pp 27–48

    Google Scholar 

  • Shapiro L, Haralick R (1981) Structural descriptions and inexact matching. IEEE Trans Patt Anal Machine Intell 3:504–519

    Article  Google Scholar 

  • Stankiewicz BJ (2002) Empirical evidence for independent dimensions in the visual representation of three-dimensional shape. J Exp Psychol Hum 28:913–932

    Article  Google Scholar 

  • Tanaka JW, Taylor M (1991) Object categories and expertise: is the basic level in the eye of the beholder? Cogn Psychol 23:457–482

    Article  Google Scholar 

  • Thoma V, Hummel JE, Davidoff J (2004) Evidence for holistic representations of ignored images and analytic representations of attended images. J Exp Psychol Hum 30:257–267

    Article  Google Scholar 

  • Ullman S, Sali E (2000) Object classification using a fragment-based representation. In: Lee SW, Bülthoff HH (Eds) Biologically motivated computer vision. Springer, Berlin Heidelberg New York, pp 73–87

    Google Scholar 

  • Vuilleumier P, Henson RN, Driver J, Dolan RJ (2002) Multiple levels of visual object constancy revealed by event-related fMRI of repition priming. Nat Neurosci 5:491–499

    Article  PubMed  CAS  Google Scholar 

  • Zetzsche C, Barth E (1990) Fundamental limits of linear filters in the visual processing of two-dimensional signals. Vision Res 30:1111–1117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Jüttner, M. (2007). Part-Based Strategies for Visual Categorisation and Object Recognition. In: Osaka, N., Rentschler, I., Biederman, I. (eds) Object Recognition, Attention, and Action. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73019-4_5

Download citation

Publish with us

Policies and ethics