Skip to main content

Pattern Recognition in Direct and Indirect View

  • Chapter
Object Recognition, Attention, and Action

Abstract

More than a century ago, it was shown that there is an acuity deficit in peripheral vision that can be compensated for by increasing stimulus size (Aubert and Foerster 1857; Wertheim 1894). The corresponding size-scaling approach, or cortical magnification concept, has accounted for much of the eccentricity variation in grating contrast sensitivity (Koenderink et al. 1978; Rovamo and Virsu 1979) and various other measures of acuity (e.g., Levi et al. 1985; Virsu et al. 1987). Yet this cannot be the whole truth since size-scaling fails to establish positional invariance for a wide range of visual tasks, like numerosity judgments (Parth and Rentschler 1984), discrimination of phase-modulated (Harvey et al. 1985) and mirror-symmetric images (Rentschler and Treutwein 1985), face recognition (Hübner et al. 1985), and recognition of numeric characters (Strasburger and Rentschler 1996); (Strasburger et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson J, Pimm-Smith E, Evans C, Harding G, Braddick O (1986) Visual crowding in young children. Doc Ophthalmol Proc 45:201–213

    Google Scholar 

  • Aubert H, Foerster CFR (1857) Beiträge zur Kenntnis des indirecten Sehens. (I). Untersuchungen über den Raumsinn der Retina. Arch Ophthalmol 3:1–37

    Google Scholar 

  • Averbach E, Coriell AS (1961) Short-term memory in vision. Bell System Tech J 40:309–328

    Google Scholar 

  • Baddeley A (1986) Working memory. Clarendon Press, Oxford

    Google Scholar 

  • Bischof WF, Caelli T (1997) Scene understanding by rule evaluation. IEEE Trans Pattern Anal Machine Intell (PAMI) 19:1284–1288

    Article  Google Scholar 

  • Bouma H (1970) Interaction effects in parafoveal letter recognition. Nature 226:177–178

    Article  PubMed  CAS  Google Scholar 

  • Caelli T, Bischof WF (1997) Machine learning and image interpretation. Plenum Press, New York

    Google Scholar 

  • Deco G, Rolls ET (2004) A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res 44:621–642

    Article  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of visual attention. Annu Rev Neurosci 18:193–222

    Article  PubMed  CAS  Google Scholar 

  • Eriksen CW, Rohrbaugh JW (1970) Some factors determining efficiency of selective attention. Am J Psychol 83:330–343

    Article  Google Scholar 

  • Flom MC, Weymouth FW, Kahnemann D (1963) Visual resolution and contour interaction. J Opt Soc Am 53:1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Fuster JM (2003) Cortex and mind. Oxford University Press, Oxford

    Google Scholar 

  • Geiger G, Lettvin JY (1986) Enhancing the perception of form in peripheral vision. Perception 15:119–130

    Article  PubMed  CAS  Google Scholar 

  • Harvey LO, Jr. (1997) Efficient estimation of sensory thresholds with ML-PEST. Spat Vis 11:121–128

    Article  PubMed  Google Scholar 

  • Harvey LO, Jr., Rentschler I, Weiss C (1985) Sensitivity to phase distortion in central and peripheral vision. Percept Psychophys 38:392–396

    PubMed  Google Scholar 

  • He S, Cavanagh P, Intriligator J (1996) Attentional resolution and the locus of visual awareness. Nature 383:334–337

    Article  PubMed  CAS  Google Scholar 

  • Hübner M, Rentschler I, Encke W (1985) Hidden-face recognition: comparing foveal and extrafoveal performance. Hum Neurobiol 4:1–7

    PubMed  Google Scholar 

  • Jüttner M, Rentschler I (1996) Reduced perceptual dimensionality in extrafoveal vision. Vision Res 36:1007–1022

    Article  PubMed  Google Scholar 

  • Jüttner M, Rentschler I (2000) Scale-invariant superiority of foveal vision in perceptual categorization. Eur J Neurosci 12:353–359

    Article  PubMed  Google Scholar 

  • Koenderink JJ, Bouman MA, Bueno de Mesquita AE, Slappendel S (1978) Perimetry of contrast detection thresholds of moving spatial sine wave patterns. I. The near peripheral visual field (eccentricity 0°-8°). J Opt Soc Am 68:845–84

    Article  PubMed  CAS  Google Scholar 

  • LaBerge D (1995) Computational and anatomical models of selective attention in object identification. In: Gazzaniga MS (Ed) The cognitive neurosciences. MIT Press, Cambridge MA, pp 649–663

    Google Scholar 

  • Levi DM, Klein SA, Aitsebaomo AP (1985) Vernier acuity, crowding and cortical magnification. Vision Res 25:963–977

    Article  PubMed  CAS  Google Scholar 

  • Mackeben M (1999) Sustained focal attention and peripheral letter recognition. Spat Vis 12:51–72

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-term memory. Science 263:520–522

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167

    PubMed  CAS  Google Scholar 

  • Nakayama K, Mackeben M (1989) Sustained and transient components of focal visual attention. Vision Res 29:1631–1647

    Article  PubMed  CAS  Google Scholar 

  • Parth P, Rentschler I (1984) Numerosity judgements in peripheral vision: limitations of the cortical magnification hypothesis. Behav Brain Res 11:241–248

    Article  PubMed  CAS  Google Scholar 

  • Pelli DG, Palomares M, Majaj NJ (2004) Crowding is unlike ordinary masking: distinguishing feature integration from detection. J Vis 4:1136–1169

    Article  PubMed  Google Scholar 

  • Rentschler I (1985) Symmetry-coded cells in the visual cortex? Nature 317:581–582

    Article  PubMed  CAS  Google Scholar 

  • Rentschler I, Jüttner M (2007) Mirror-image relations in category learning. Vis Cognit 15:211–237

    Article  Google Scholar 

  • Rentschler I, Treutwein B (1985) Loss of spatial phase relationships in extrafoveal vision. Nature 313:308–310

    Article  PubMed  CAS  Google Scholar 

  • Rentschler I, Jüttner M, Caelli T (1994) Probabilistic analysis of human supervised learning and classification. Vision Res 34:669–687

    Article  PubMed  CAS  Google Scholar 

  • Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor. Exp Brain Res 37:495–510

    Article  PubMed  CAS  Google Scholar 

  • Saarinen J (1987) Perception of positional relationships between line segments in eccentric vision. Perception 16:583–591

    Article  PubMed  CAS  Google Scholar 

  • Strasburger H (2005) Unfocussed spatial attention underlies the crowding effect in indirect form vision. J Vis 5:1024–1037

    Article  PubMed  Google Scholar 

  • Strasburger H, Rentschler I (1996) Contrast-dependent dissociation of visual recognition and detection field. Eur J Neurosci 8:1787–1791

    Article  PubMed  CAS  Google Scholar 

  • Strasburger H, Harvey LOJ, Rentschler I (1991) Contrast thresholds for identification of numeric characters in direct and excentric view. Percept Psychophys 49:495–508

    PubMed  CAS  Google Scholar 

  • Stuart JA, Burian HM (1962) A study of separation difficulty: its relationship to visual acuity in normal and amblyopic eyes. Am J Ophthalmol 53:471–477

    PubMed  CAS  Google Scholar 

  • Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139

    Article  PubMed  CAS  Google Scholar 

  • Tripathy SP, Levi DM (1994) Long-range dichoptic interactions in the human visual cortex in the region corresponding to the blind spot. Vision Res 34:1127–1138

    Article  PubMed  CAS  Google Scholar 

  • Vidyasagar TR (2001) From attentional gating in macaque primary visual cortex to dyslexia in humans. Prog Brain Res 134:297–312

    Article  PubMed  CAS  Google Scholar 

  • Virsu V, Näsänen R, Osmoviita K (1987) Cortical magnification and peripheral vision. J Opt Soc Am A 4:1568–1578

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S (1985) Pattern recognition: human and mechanical. John Wiley, New York

    Google Scholar 

  • Wertheim T (1894) Über die indirekte Sehschärfe. Z Psychol Physiol Sinnesorg 7:172–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Strasburger, H., Rentschler, I. (2007). Pattern Recognition in Direct and Indirect View. In: Osaka, N., Rentschler, I., Biederman, I. (eds) Object Recognition, Attention, and Action. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73019-4_4

Download citation

Publish with us

Policies and ethics