Influence of Visual Motion on Object Localisation in Perception and Action

  • Hiroshi Ashida


The topic of this chapter is visual localisation of objects. Object recognition normally refers to the ability to identify what it is without concerned for where it is. In other words, the question is how we obtain a location-invariant representation of object. There is also a rationale derived from physiological findings indicating two separate pathways for what and where information (Ungerleider and Mishkin 1982). However, it is often equally important in real life to know where the object lies. We cannot eat an apple if we can not reach it with our hand and grasp it. To do this, we need to know its precise location together with its identity as a fresh apple that can be eaten. Object localisation is therefore closely related to object recognition in an ecological sense, and it would make sense to take a short break from the intense discussion on recognition in this book to consider localisation.


Visual Motion Curr Biol Visual Illusion Conscious Perception Representational Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aglioti S, DeSouza JF, Goodale MA (1995) Size-contrast illusions deceive the eye but not the hand. Curr Biol 5:679–685PubMedCrossRefGoogle Scholar
  2. Anstis S, Ramachandran VS (1995) At the edge of movement. In: Gregory R, Harris J, Heard P, Rose D (Eds) The artful eye. Oxford University Press, Oxford, pp 232–248Google Scholar
  3. Arnold DH, Durant S, Johnston A (2003) Latency differences and the flash-lag effect. Vision Res 43:1829–1835PubMedCrossRefGoogle Scholar
  4. Ashida H (2004) Action-specific extrapolation of target motion in human visual system. Neuropsychologia 42:1515–1524PubMedCrossRefGoogle Scholar
  5. Ashida H, Yamagishi N, Anderson SJ (2005) Visually-guided actions are dependent on luminance signals. Perception 34:245CrossRefGoogle Scholar
  6. Bálint R (1909) Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmersamkeit. Monatschrift für Psychiatrie und Neurologie 25:51–8Google Scholar
  7. Brenner E, Smeets JB (2000) Motion extrapolation is not responsible for the flash-lag effect. Vision Res 40:1645–1648PubMedCrossRefGoogle Scholar
  8. Bridgeman B, Lewis S, Heit G, Nagle M (1979) Relation between cognitive and motororiented systems of visual position perception. J Exp Psychol Hum Percept Perform 5:692–700PubMedCrossRefGoogle Scholar
  9. Bridgeman B, Kirch M, Sperling A (1981) Segregation of cognitive and motor aspects of visual function using induced motion. Percept Psychophys 29:336–342Google Scholar
  10. Bruno N (2001) When does action resist visual illusions? Trends Cogn Sci 5:379–382PubMedCrossRefGoogle Scholar
  11. Carey DP (2001) Do action systems resist visual illusions? Trends Cogn Sci 5:109–113PubMedCrossRefGoogle Scholar
  12. Cavanagh P (1997) Visual perception. Predicting the present. Nature 386:19, 21PubMedCrossRefGoogle Scholar
  13. De Valois RL, De Valois KK (1991) Vernier acuity with stationary moving gabors. Vision Res 31:1619–1626PubMedCrossRefGoogle Scholar
  14. Dyde RT, Milner AD (2002) Two illusions of perceived orientation: one fools all of the people some of the time; the other fools all of the people all of the time. Exp Brain Res 144:518–527PubMedCrossRefGoogle Scholar
  15. Eagleman DM, Sejnowski TJ (2000) Motion integration and postdiction in visual awareness. Science 287:2036–2038PubMedCrossRefGoogle Scholar
  16. Franz VH (2001) Action does not resist visual illusions. Trends Cogn Sci 5:457–459PubMedCrossRefGoogle Scholar
  17. Franz VH, Gegenfurtner KR, Bulthoff HH, Fahle M (2000) Grasping visual illusions: no evidence for a dissociation between perception and action. Psychol Sci 11:20–25PubMedCrossRefGoogle Scholar
  18. Freyd JJ, Finke RA (1984) Representational momentum. J Exp Psychol Learn Mem Cogn 10:126–132CrossRefGoogle Scholar
  19. Fu YX, Shen Y, Gao H, Dan Y (2004) Asymmetry in visual cortical circuits underlying motion-induced perceptual mislocalization. J Neurosci 24:2165–2171PubMedCrossRefGoogle Scholar
  20. Gegenfurtner KR, Kiper DC, Beusmans JMH, Carandini M, Zaldi Q, Movshon JA (1994) Chromatic properties of neurons in macaque MT. Vis Neurosci 11:455–466PubMedCrossRefGoogle Scholar
  21. Glover S (2003) Optic ataxia as a deficit specific to the on-line control of actions. Neurosci Biobehav Rev 27:447–456PubMedCrossRefGoogle Scholar
  22. Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156PubMedCrossRefGoogle Scholar
  23. Hu Y, Goodale MA (2000) Grasping after a delay shifts size-scaling from absolute to relative metrics. J Cogn Neurosci 12:856–868PubMedCrossRefGoogle Scholar
  24. Hubbard TL (1995) Cognitive representation of motion: evidence for friction and gravity analogues. J Exp Psychol Learn Mem Cogn 21:241–254PubMedCrossRefGoogle Scholar
  25. Kanai R, Sheth BR, Shimojo S (2004) Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res 44:2605–2619PubMedCrossRefGoogle Scholar
  26. Kerzel D (2000) Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Res 40:3703–3715PubMedCrossRefGoogle Scholar
  27. Khurana B, Watanabe K, Nijhawan R (2000) The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed? Perception 29:675–69PubMedCrossRefGoogle Scholar
  28. Liu J, Ashida H, Smith AT, and Wandell BA (2006) Assessment of stimulus induced changes in human VI visual field maps. J Neurophysiol 96:3398–3408PubMedCrossRefGoogle Scholar
  29. Mackay DM (1958) Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181:507–508PubMedCrossRefGoogle Scholar
  30. Mather G, Verstraten FAJ, Anstis S (1998) The motion aftereffect: a modern perspective. MIT Press, Cambridge MAGoogle Scholar
  31. Maunsell JH, Gibson JR (1992) Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol 68:1332–1344PubMedGoogle Scholar
  32. McGraw PV, Whitaker D, Skillen J, Chung ST (2002) Motion adaptation distorts perceived visual position. Curr Biol 12:2042–2047PubMedCrossRefGoogle Scholar
  33. McGraw PV, Walsh V, Barrett BT (2004) Motion-sensitive neurones in V5/MT modulate perceived spatial position. Curr Biol 14:1090–1093PubMedCrossRefGoogle Scholar
  34. Milner D, Goodale MA (1995) The visual brain in action. Oxford University Press, OxfordGoogle Scholar
  35. Milner AD, Perrett DI, Johnston RS, Benson PJ, Jordan TR, Heeley DW, Bettucci D, Mortara F, Mutani R, Terazzi E, Davidson DLW (1991) Perception and action in “visual form agnosia”. Brain 114:405–42PubMedCrossRefGoogle Scholar
  36. Milner AD, Paulignan Y, Dijkerman HC, Michel F, Jeannerod M (1999) A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization. Proc R Soc Lond B Biol Sci 266:2225–2229CrossRefGoogle Scholar
  37. Namba J, Baldo VC (2004) The modulation of the flash-lag effect by voluntary attention. Perception 33:621–631PubMedCrossRefGoogle Scholar
  38. Nijhawan R (1994) Motion extrapolation in catching. Nature 370:256–257PubMedCrossRefGoogle Scholar
  39. Nijhawan R, Kirschfeld K (2003) Analogous mechanisms compensate for neural delays in the sensory and the motor pathways. Evidence from motor flash-lag. Curr Biol 13:749–753PubMedCrossRefGoogle Scholar
  40. Nishida S, Johnston A (1999) Influence of motion signals on the perceived position of spatial pattern. Nature 397:610–612PubMedCrossRefGoogle Scholar
  41. Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157PubMedCrossRefGoogle Scholar
  42. Rossetti Y, Pisella L, Vighetto A (2003) Optic ataxia revisited: visually guided action versus immediate visuomotor control. Exp Brain Res 153:171–179PubMedCrossRefGoogle Scholar
  43. Snowden RJ (1998) Shifts in perceived position following adaptation to visual motion. Curr Biol 8:1343–1345PubMedCrossRefGoogle Scholar
  44. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (Eds) Analysis of visual behavior. MIT Press, Cambridge MAGoogle Scholar
  45. Weiskranz L (1986) Blindsight: a case study and its implications. Oxford Press, OxfordGoogle Scholar
  46. Whitney D (2005) Motion distorts perceived position without awareness of motion. Curr Biol 15:R324–326PubMedCrossRefGoogle Scholar
  47. Whitney D, Cavanagh P (2000) Motion distorts visual space: shifting the perceived position of remote stationary objects. Nat Neurosci 3:954–959PubMedCrossRefGoogle Scholar
  48. Whitney D, Murakami I (1998) Latency difference, not spatial extrapolation. Nat Neurosci 1:656–657PubMedCrossRefGoogle Scholar
  49. Whitney D, Murakami I, Cavanagh P (2000) Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Res 40:137–149PubMedCrossRefGoogle Scholar
  50. Whitney D, Goltz HC, Thomas CG, Gati JS, Menon RS, Goodale MA (2003a) Flexible retinotopy: motion-dependent position coding in the visual cortex. Science 302:878–881PubMedCrossRefGoogle Scholar
  51. Whitney D, Westwood DA, Goodale MA (2003b) The influence of visual motion on fast reaching movements to a stationary object. Nature 423:869–873PubMedCrossRefGoogle Scholar
  52. Yamagishi N, Anderson SJ, Ashida H (2001) Evidence for dissociation between the perceptual and visuomotor systems in humans. Proc R Soc Lond B Biol Sci 268:973–977CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Hiroshi Ashida
    • 1
  1. 1.Graduate School of LettersKyoto UniversityKyotoJapan

Personalised recommendations