Skip to main content

Influence of Visual Motion on Object Localisation in Perception and Action

  • Chapter
Book cover Object Recognition, Attention, and Action
  • 701 Accesses

Abstract

The topic of this chapter is visual localisation of objects. Object recognition normally refers to the ability to identify what it is without concerned for where it is. In other words, the question is how we obtain a location-invariant representation of object. There is also a rationale derived from physiological findings indicating two separate pathways for what and where information (Ungerleider and Mishkin 1982). However, it is often equally important in real life to know where the object lies. We cannot eat an apple if we can not reach it with our hand and grasp it. To do this, we need to know its precise location together with its identity as a fresh apple that can be eaten. Object localisation is therefore closely related to object recognition in an ecological sense, and it would make sense to take a short break from the intense discussion on recognition in this book to consider localisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aglioti S, DeSouza JF, Goodale MA (1995) Size-contrast illusions deceive the eye but not the hand. Curr Biol 5:679–685

    Article  PubMed  CAS  Google Scholar 

  • Anstis S, Ramachandran VS (1995) At the edge of movement. In: Gregory R, Harris J, Heard P, Rose D (Eds) The artful eye. Oxford University Press, Oxford, pp 232–248

    Google Scholar 

  • Arnold DH, Durant S, Johnston A (2003) Latency differences and the flash-lag effect. Vision Res 43:1829–1835

    Article  PubMed  Google Scholar 

  • Ashida H (2004) Action-specific extrapolation of target motion in human visual system. Neuropsychologia 42:1515–1524

    Article  PubMed  Google Scholar 

  • Ashida H, Yamagishi N, Anderson SJ (2005) Visually-guided actions are dependent on luminance signals. Perception 34:245

    Article  Google Scholar 

  • Bálint R (1909) Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmersamkeit. Monatschrift für Psychiatrie und Neurologie 25:51–8

    Google Scholar 

  • Brenner E, Smeets JB (2000) Motion extrapolation is not responsible for the flash-lag effect. Vision Res 40:1645–1648

    Article  PubMed  CAS  Google Scholar 

  • Bridgeman B, Lewis S, Heit G, Nagle M (1979) Relation between cognitive and motororiented systems of visual position perception. J Exp Psychol Hum Percept Perform 5:692–700

    Article  PubMed  CAS  Google Scholar 

  • Bridgeman B, Kirch M, Sperling A (1981) Segregation of cognitive and motor aspects of visual function using induced motion. Percept Psychophys 29:336–342

    Google Scholar 

  • Bruno N (2001) When does action resist visual illusions? Trends Cogn Sci 5:379–382

    Article  PubMed  Google Scholar 

  • Carey DP (2001) Do action systems resist visual illusions? Trends Cogn Sci 5:109–113

    Article  PubMed  Google Scholar 

  • Cavanagh P (1997) Visual perception. Predicting the present. Nature 386:19, 21

    Article  PubMed  CAS  Google Scholar 

  • De Valois RL, De Valois KK (1991) Vernier acuity with stationary moving gabors. Vision Res 31:1619–1626

    Article  PubMed  Google Scholar 

  • Dyde RT, Milner AD (2002) Two illusions of perceived orientation: one fools all of the people some of the time; the other fools all of the people all of the time. Exp Brain Res 144:518–527

    Article  PubMed  Google Scholar 

  • Eagleman DM, Sejnowski TJ (2000) Motion integration and postdiction in visual awareness. Science 287:2036–2038

    Article  PubMed  CAS  Google Scholar 

  • Franz VH (2001) Action does not resist visual illusions. Trends Cogn Sci 5:457–459

    Article  PubMed  Google Scholar 

  • Franz VH, Gegenfurtner KR, Bulthoff HH, Fahle M (2000) Grasping visual illusions: no evidence for a dissociation between perception and action. Psychol Sci 11:20–25

    Article  PubMed  CAS  Google Scholar 

  • Freyd JJ, Finke RA (1984) Representational momentum. J Exp Psychol Learn Mem Cogn 10:126–132

    Article  Google Scholar 

  • Fu YX, Shen Y, Gao H, Dan Y (2004) Asymmetry in visual cortical circuits underlying motion-induced perceptual mislocalization. J Neurosci 24:2165–2171

    Article  PubMed  CAS  Google Scholar 

  • Gegenfurtner KR, Kiper DC, Beusmans JMH, Carandini M, Zaldi Q, Movshon JA (1994) Chromatic properties of neurons in macaque MT. Vis Neurosci 11:455–466

    Article  PubMed  CAS  Google Scholar 

  • Glover S (2003) Optic ataxia as a deficit specific to the on-line control of actions. Neurosci Biobehav Rev 27:447–456

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Goodale MA (2000) Grasping after a delay shifts size-scaling from absolute to relative metrics. J Cogn Neurosci 12:856–868

    Article  PubMed  CAS  Google Scholar 

  • Hubbard TL (1995) Cognitive representation of motion: evidence for friction and gravity analogues. J Exp Psychol Learn Mem Cogn 21:241–254

    Article  PubMed  CAS  Google Scholar 

  • Kanai R, Sheth BR, Shimojo S (2004) Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res 44:2605–2619

    Article  PubMed  Google Scholar 

  • Kerzel D (2000) Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Res 40:3703–3715

    Article  PubMed  CAS  Google Scholar 

  • Khurana B, Watanabe K, Nijhawan R (2000) The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed? Perception 29:675–69

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Ashida H, Smith AT, and Wandell BA (2006) Assessment of stimulus induced changes in human VI visual field maps. J Neurophysiol 96:3398–3408

    Article  PubMed  Google Scholar 

  • Mackay DM (1958) Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181:507–508

    Article  PubMed  CAS  Google Scholar 

  • Mather G, Verstraten FAJ, Anstis S (1998) The motion aftereffect: a modern perspective. MIT Press, Cambridge MA

    Google Scholar 

  • Maunsell JH, Gibson JR (1992) Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol 68:1332–1344

    PubMed  CAS  Google Scholar 

  • McGraw PV, Whitaker D, Skillen J, Chung ST (2002) Motion adaptation distorts perceived visual position. Curr Biol 12:2042–2047

    Article  PubMed  CAS  Google Scholar 

  • McGraw PV, Walsh V, Barrett BT (2004) Motion-sensitive neurones in V5/MT modulate perceived spatial position. Curr Biol 14:1090–1093

    Article  PubMed  CAS  Google Scholar 

  • Milner D, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Milner AD, Perrett DI, Johnston RS, Benson PJ, Jordan TR, Heeley DW, Bettucci D, Mortara F, Mutani R, Terazzi E, Davidson DLW (1991) Perception and action in “visual form agnosia”. Brain 114:405–42

    Article  PubMed  Google Scholar 

  • Milner AD, Paulignan Y, Dijkerman HC, Michel F, Jeannerod M (1999) A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization. Proc R Soc Lond B Biol Sci 266:2225–2229

    Article  CAS  Google Scholar 

  • Namba J, Baldo VC (2004) The modulation of the flash-lag effect by voluntary attention. Perception 33:621–631

    Article  PubMed  Google Scholar 

  • Nijhawan R (1994) Motion extrapolation in catching. Nature 370:256–257

    Article  PubMed  CAS  Google Scholar 

  • Nijhawan R, Kirschfeld K (2003) Analogous mechanisms compensate for neural delays in the sensory and the motor pathways. Evidence from motor flash-lag. Curr Biol 13:749–753

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Johnston A (1999) Influence of motion signals on the perceived position of spatial pattern. Nature 397:610–612

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157

    Article  PubMed  Google Scholar 

  • Rossetti Y, Pisella L, Vighetto A (2003) Optic ataxia revisited: visually guided action versus immediate visuomotor control. Exp Brain Res 153:171–179

    Article  PubMed  Google Scholar 

  • Snowden RJ (1998) Shifts in perceived position following adaptation to visual motion. Curr Biol 8:1343–1345

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (Eds) Analysis of visual behavior. MIT Press, Cambridge MA

    Google Scholar 

  • Weiskranz L (1986) Blindsight: a case study and its implications. Oxford Press, Oxford

    Google Scholar 

  • Whitney D (2005) Motion distorts perceived position without awareness of motion. Curr Biol 15:R324–326

    Article  PubMed  CAS  Google Scholar 

  • Whitney D, Cavanagh P (2000) Motion distorts visual space: shifting the perceived position of remote stationary objects. Nat Neurosci 3:954–959

    Article  PubMed  CAS  Google Scholar 

  • Whitney D, Murakami I (1998) Latency difference, not spatial extrapolation. Nat Neurosci 1:656–657

    Article  PubMed  CAS  Google Scholar 

  • Whitney D, Murakami I, Cavanagh P (2000) Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Res 40:137–149

    Article  PubMed  CAS  Google Scholar 

  • Whitney D, Goltz HC, Thomas CG, Gati JS, Menon RS, Goodale MA (2003a) Flexible retinotopy: motion-dependent position coding in the visual cortex. Science 302:878–881

    Article  PubMed  CAS  Google Scholar 

  • Whitney D, Westwood DA, Goodale MA (2003b) The influence of visual motion on fast reaching movements to a stationary object. Nature 423:869–873

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi N, Anderson SJ, Ashida H (2001) Evidence for dissociation between the perceptual and visuomotor systems in humans. Proc R Soc Lond B Biol Sci 268:973–977

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ashida, H. (2007). Influence of Visual Motion on Object Localisation in Perception and Action. In: Osaka, N., Rentschler, I., Biederman, I. (eds) Object Recognition, Attention, and Action. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73019-4_14

Download citation

Publish with us

Policies and ethics