Skip to main content

Biased Competition and Cooperation: A Mechanism of Mammalian Visual Recognition?

  • Chapter
Object Recognition, Attention, and Action

Abstract

In humans and mammals with higher cognitive capabilities, the neocortex is a very prominent brain structure (Fig. 1). As such it seems to be crucially involved in the cognitive processes. The neocortex can be subdivided into a set of functionally different areas (Van Essen et al. 1992), and it communicates with most of the other brain systems. It is a structure with a high internal functional complexity and diversity which is involved in most aspects of cerebral processing. Various cortical areas represent and process different aspects of the environment and the subject’s internal states in a distributed way. In the visual modality for example, occipital to temporal regions of the brain are thought to mainly represent object identity-related sensory information, whereas occipital to parietal brain regions are thought to mainly represent and process spatial information and aspects preparing motor plans. The former is referred to as the “ventral stream” and the latter as the “dorsal stream” (Ungerleider and Haxby 1994 Lateral prefrontal areas are thought to store contextual information of the present and recent past, which can serve as a reference framework for the behavioral relevance of visual stimuli and motor plans, and can form a basis for decision- making processes (Leon and Shadlen 1998).

Illustration of the human neocortex. Gray-shaded regions group the cortical areas by functional similarity, black arrows schematically indicate inter-areal connectivity. Adapted from Statter (2002)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles A (1991) Corticonics. Cambridge University Press, New York

    Google Scholar 

  • Almeida R, Deco G, Stetter M (2004) Modular biased-competition and cooperation: a candidate mechanism for selective working memory. Eur J Neurosci 20(10):2789–2803

    Article  PubMed  Google Scholar 

  • Amit DJ, Brunel N (1997a) Dynamics of a recurrent network of spiking neurons before and following learning. Network Comput Neural Syst 8:373–404

    Article  Google Scholar 

  • Amit DJ, Brunel N (1997b) Model of global spontaneous activity and local structured (learned) delay activity during delay periods in cerebral cortex. Cereb Cortex 7:237–252

    Article  PubMed  CAS  Google Scholar 

  • Amit DJ, Brunel N, Tsodyks M (1994) Correlations of cortical hebbian reverberations: experiment versus theory. J Neurosci 14:6435–6445

    PubMed  CAS  Google Scholar 

  • Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17: 2112–2127

    PubMed  CAS  Google Scholar 

  • Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Comput Neurosci 11:63–85

    Article  CAS  Google Scholar 

  • Chelazzi L (1998) Serial attention mechanisms in visual search: a critical look at the evidence. Psychol Res 62:195–219

    Article  Google Scholar 

  • Chelazzi L, Miller E, Duncan J, Desimone R (1993) A neural basis for visual search in inferior temporal cortex. Nature 363:345–347

    Article  PubMed  CAS  Google Scholar 

  • Corchs S, Stetter M, Deco G (2003) System-level neuronal modeling of visual attentional mechanisms. Neuroimage 20:143–160

    Google Scholar 

  • Deco G, Rolls ET (2003) Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex. Eur J Neurosci 18:2374–2390

    Article  PubMed  Google Scholar 

  • Deco G, Rolls ET, Horwitz B (2004) “What” and “where” in visual working memory: a computational neurodynamical perspective for integrating fmri and single-neuron data. J Cogn Neurosci 16:683–701

    Article  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  PubMed  CAS  Google Scholar 

  • Everling S, Tinsley C, Gaffan D, Duncan J (2002) Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nat Neurosci 5:671–676

    Article  PubMed  CAS  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2003) A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci 23:5235–5246

    PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79:2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessel TM (1991) Principles of neural sciences. Prentice Hall International, London.

    Google Scholar 

  • Kisvarday ZF, Toth E, Rausch M, Eysel UT (1997) Orientationspecific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb Cortex 7:605–618

    Article  PubMed  CAS  Google Scholar 

  • Koch KW, Fuster JM (1989) Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp Brain Res 76:292–306

    Article  PubMed  CAS  Google Scholar 

  • Leon ML, Shadlen MN (1998) Exploring the neurophysiology of decisions. Neuron 21:669–672

    Article  PubMed  CAS  Google Scholar 

  • Lund JS, Levitt JB, Wu Q (1994) Topography of excitatory and inhibitory connectional anatomy in monkey visual cortex. In: Lawton TB (Ed) Computational vision based on neurobiology. SPIE, Bellingham WA, pp 174–184

    Google Scholar 

  • Malach R, Amir Y, Harel M, Grinvald A (1993) Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc Natl Acad Sci USA 90:10469–10473

    Article  PubMed  CAS  Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–784

    Article  PubMed  CAS  Google Scholar 

  • Reynolds J, Desimone R (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron 24:19–29

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Deco G (2002) Computational neuroscience of vision. Oxford University Press, Oxford

    Google Scholar 

  • Salin P, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75:107–154

    PubMed  CAS  Google Scholar 

  • Sigala N, Logothetis N (2002) Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415:318–320

    Article  PubMed  CAS  Google Scholar 

  • Simons DJ (2000) Attentional capture and inattentional blindness. Trends Cognit Sci 4:147–155

    Article  Google Scholar 

  • Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organization in the cerebral cortex. Brain Res Brain Res Rev 26:113–135

    Article  PubMed  CAS  Google Scholar 

  • Stetter M (2002) Exploration of cortical function. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Szabo M, Almeida R, Deco G, Stetter M (2004) Cooperation and biased competition model can explain attentional filtering in the prefrontal cortex. Eur J Neurosci 19:1969–1977

    Article  PubMed  Google Scholar 

  • Szabo M, Almeida R, Deco G, Stetter M (2005) A neuronal model for the shaping of feature selectivity in it by visual categorization. Neurocomputing 65–66:195–201

    Article  Google Scholar 

  • Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401:699–703

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Haxby JV (1994) “What” and “where” in the human brain. Curr Opin Neurobiol 4:157–165

    Article  PubMed  CAS  Google Scholar 

  • Van Essen DC, anderson CH, Felleman DJ (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255:419–423

    Article  PubMed  Google Scholar 

  • Wilson F, Scalaidhe S, Goldman-Rakic P (1994) Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. Proc Natl Acad Sci USA 91:4009–4013

    Article  PubMed  CAS  Google Scholar 

  • Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335:311–317

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Deco, G., Stetter, M., Szabo, M. (2007). Biased Competition and Cooperation: A Mechanism of Mammalian Visual Recognition?. In: Osaka, N., Rentschler, I., Biederman, I. (eds) Object Recognition, Attention, and Action. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73019-4_13

Download citation

Publish with us

Policies and ethics