Skip to main content

Interactions Between Shape Perception and Egocentric Localization

  • Chapter
Object Recognition, Attention, and Action
  • 703 Accesses

Abstract

Neuropsychological studies of patients with damage to either the temporal or parietal region have suggested that these areas can be broadly divided into two functionally different pathways, a ventral “what” pathway for feature-related object vision and a dorsal “where” pathway for motor-oriented spatial vision (Milner and Goodale 1995; Mishkin and Ungerleider 1982). This is a reasonable separation since humans must resolve what an object is regardless of where it is to achieve object recognition, and vice versa to plan body actions in relation to the object. Neuroanatomical studies in the monkey cerebral cortex have demonstrated that parietal and temporal cortical areas are heavily connected with each other (Felleman and Van Essen 1991). Given the similarity between human and monkey cortical architecture (Van Essen 2003), it is expected that human temporal and parietal areas also have similar inter-connections. Such interconnections would imply potential interactions between the temporal and parietal areas. However, it remains unclear how deeply these areas actually interact with each other. Concerning this question, we report recent studies suggesting that illusory perception of an object location called “saccadic compression of visual space” affects the perception of object shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Zipser D (1987) The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. Can J Physiol Pharmacol 66:488–501

    Google Scholar 

  • Bischof N, Kramer E (1968) Untersuchungen und überlegungen zur richtungwahrnehmung bei willkürlichen sakkadischen augenbewegungen. Psychologische Forschung 32:185–218

    Article  PubMed  CAS  Google Scholar 

  • Brandeis D, Lehmann D (1989) Segments of event-related potential map series reveal landscape changes with visual attention and subjective contours. Electroencephalogr Clin Neurophysiol 73:507–519

    Article  PubMed  CAS  Google Scholar 

  • Bridgeman B, Van der Heijden AH, Velichkovsky BM (1994) A theory of visual stability across saccadic eye movements. Behav Brain Sci 17:247–292

    Article  Google Scholar 

  • Deco G, Lee TS (2004) The role of early visual cortex in visual integration: a neural model of recurrent interaction. Eur J Neurosci 20:1089–1100

    Article  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  PubMed  CAS  Google Scholar 

  • Glass L (1969) Moiré effects from random dots. Nature 243:578–580

    Article  Google Scholar 

  • Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41:1409–1422

    Article  PubMed  CAS  Google Scholar 

  • Guttman SE, Kellman PJ (2004) Contour interpolation revealed by a dot localization paradigm. Vision Res 44:1799–1815

    PubMed  Google Scholar 

  • Han S, Humphreys GW, Chen L (1999) Uniform connectedness and classical gestalt principles of perceptual grouping. Percept Psychophys 61:661–674

    PubMed  CAS  Google Scholar 

  • Han S, Song Y, Ding Y, Yund EW, Woods DL (2001) Neural substrates for visual perceptual grouping in humans. Psychophysiology 38:926–935

    Article  PubMed  CAS  Google Scholar 

  • Honda H (1989) Perceptual localization of visual stimuli flashed during saccades. Percept Psychophys 45:162–174

    PubMed  CAS  Google Scholar 

  • Honda H (1990) Eye movements to a visual stimulus flashed before, during, or after a saccade. In: Jeannerod M (Ed) Attention and performance, Vol. XIII. Erlbaum, Hillsdale NJ, pp 567–582

    Google Scholar 

  • Honda H (1991) The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Res 31:1915–1921

    Article  PubMed  CAS  Google Scholar 

  • Honda H (1995) Visual mislocalization produced by a rapid image displacement on the retina: examination by means of dichoptic presentation of a target and its background scene. Vision Res 35:3021–3028

    Article  PubMed  CAS  Google Scholar 

  • Juan CH, Walsh V (2003) Feedback to v1: a reverse hierarchy in vision. Exp Brain Res 150:259–263

    PubMed  Google Scholar 

  • Kaiser M, Lappe M (2004) Perisaccadic mislocalization orthogonal to saccade direction. Neuron 41:293–300

    Article  PubMed  CAS  Google Scholar 

  • Kanizsa G (1979) Organization in vision. Springer, New York

    Google Scholar 

  • Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293:1506–1509

    Article  PubMed  CAS  Google Scholar 

  • Krekelberg B, Kubischik M, Hoffmann KP, Bremmer F (2003) Neural correlates of visual localization and perisaccadic mislocalization. Neuron 37:537–545

    Article  PubMed  CAS  Google Scholar 

  • Lappe M, Awater H, Krekelberg B (2000) Postsaccadic visual references generate presaccadic compression of space. Nature 403:892–894

    Article  PubMed  CAS  Google Scholar 

  • Larsson J, Amunts K, Gulyas B, Malikovic A, Zilles K, Roland PE (1999) Neuronal correlates of real and illusory contour perception: functional anatomy with pet. Eur J Neurosci 11:4024–4036

    Article  PubMed  CAS  Google Scholar 

  • Matin L, Matin E, Pearce DG (1969) Visual perception of direction when voluntary saccades occur. I. Relation of visual direction of a fixation target extinguished before a saccade to a flash presented during the saccade. Percept Psychophys 5:65–80

    Google Scholar 

  • Matin L, Matin E, Pola J (1970) Visual perception of direction when voluntary saccades occur: ii. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented before the saccade. Percept Psychophys 8:9–14

    Google Scholar 

  • Matsumiya K, Uchikawa K (2001) Apparent size of an object remains uncompressed during presaccadic compression of visual space. Vision Res 41:3039–3050

    Article  PubMed  CAS  Google Scholar 

  • Mendola JD, Dale AM, Fischl B, Liu AK, Tootell RB (1999) The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J Neurosci 19:8560–8572

    PubMed  CAS  Google Scholar 

  • Michels L, Lappe M (2004) Contrast dependency of saccadic compression and suppression. Vision Res 44:2327–2336

    Article  PubMed  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action, Vol. 27. Oxford University Press, Oxford

    Google Scholar 

  • Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6:57–77

    Article  PubMed  CAS  Google Scholar 

  • Morrone MC, Ross J, Burr DC (1997) Apparent position of visual targets during real and simulated saccadic eye movements. J Neurosci 17:7941–7953

    PubMed  CAS  Google Scholar 

  • Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL (2002) Shape perception reduces activity in human primary visual cortex. Proc Natl Acad Sci USA 99:15164–15169

    Article  PubMed  CAS  Google Scholar 

  • O’Regan JK (1984) Retinal versus extraretinal influences in flash localization during saccadic eye movements in the presence of a visible background. Percept Psychophys 36:1–14

    PubMed  CAS  Google Scholar 

  • Ramsden BM, Hung CP, Roe AW (2001) Real and illusory contour processing in area v1 of the primate: a cortical balancing act. Cereb Cortex 11:648–665

    Article  PubMed  CAS  Google Scholar 

  • Ringach DL, Shapley R (1996) Spatial and temporal properties of illusory contours and amodal boundary completion. Vision Res 36:3037–3050

    Article  PubMed  CAS  Google Scholar 

  • Ross J, Morrone MC, Burr DC (1997) Compression of visual space before saccades. Nature 386:598–601

    Article  PubMed  CAS  Google Scholar 

  • Santoro L, Burr D, Morrone MC (2002) Saccadic compression can improve detection of glass patterns. Vision Res 42:1361–1366

    Article  PubMed  Google Scholar 

  • Sogo H, Osaka N (2005) Kanizsa figure does not defend against saccadic compression of visual space. Vision Res 45:301–309

    Article  PubMed  Google Scholar 

  • Sogo H, Osata N (2007) Distortion of apparent shape of an object immediately before saccade. Spat Vis 20:265–276

    PubMed  Google Scholar 

  • Van Essen DC (2003) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS (Eds) The visual neuroscience, Vol. 1. MIT Press, Cambridge, MA, pp 507–521

    Google Scholar 

  • Zipser D, Andersen RA (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–684

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sogo, H., Osaka, N. (2007). Interactions Between Shape Perception and Egocentric Localization. In: Osaka, N., Rentschler, I., Biederman, I. (eds) Object Recognition, Attention, and Action. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73019-4_11

Download citation

Publish with us

Policies and ethics