Advertisement

What molecular and genetic changes are characteristic of renal tumors? Based on the new knowledge, is molecular targeting feasible?

Abstract

During the past 20 years, consorted efforts of a number of investigator groups have identified several genes that are associated with certain types of renal tumors. To identify the genetic basis of renal tumors, investigators studied the hereditary forms of renal cell carcinoma (RCC) with the hope that gene(s) identified may also be involved in the development of sporadic forms of RCC. The VHL gene was identified in association with clear cell RCC. With a similar approach, association of the C-MET gene with papillary RCC and the BHD (Birt-Hogg-Dube) gene with chromophobe RCC and oncocytoma was discovered. To date, the VHL gene is only one that is significantly associated with the development of clear cell RCC. It is a suppressor gene. Its loss of function either by mutation or loss (physical and functional) leads to the activation of several genes, including the genes for vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-α (TGFα), and glucose transporter (GLUT-1), all of which are important for supporting the growth of tumor cells. Thus, these genes are potential targets for supperssing tumor cell growth.

Keywords

Renal Cell Carcinoma Clear Cell Carcinoma Clear Cell Renal Cell Carcinoma Papillary Renal Cell Carcinoma Fumarate Hydratase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Linehan WM, Waither MM, Zbar B (2003) The genetic basis of cancer of the kidney. J Urol 170:2163–2172.PubMedCrossRefGoogle Scholar
  2. 2.
    Cohen AJ, Li FP, Berg S, Marchetto DJ, Tsai S, Jacobs SC, Brown RS (1979) Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med 301:592–595.PubMedGoogle Scholar
  3. 3.
    Pathak S, Strong LC, Farrel RE, Trindade A (1982) Familial renal cell carcinoma with a 3:11 translocation limited to tumor cells. Science 217:939–941.PubMedCrossRefGoogle Scholar
  4. 4.
    Kovacs G, Earlandsson R, Boldog F, Ingvarsson S, Mueller-Brechlin R, Klein G, Sumegi J (1988) Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc Natl Acad Sci USA 85:1571–1575.PubMedCrossRefGoogle Scholar
  5. 5.
    Linehan WM, Lerman MI, Zbar B (1995) Identification of the von Hippel-Lindau (VHL) gene: its role in renal cancer. JAMA 273:564–570.PubMedCrossRefGoogle Scholar
  6. 6.
    Zbar B, Brauch H, Talmadge C, Linehan M (1987) Loss of allele of loci on the shirt arm of chromosome 3 in renal cell carcinoma. Nature 327:721–724.PubMedCrossRefGoogle Scholar
  7. 7.
    Tory K, Brauch H, Linehan M, Barba D, Oldfield E, Filling-Katz M, Seisinger B, Nakamura Y, White R, Marshal FF, Lerman MI, Zbar B (1989) Specific genetic change in tumors associated with von Hippel-Lindau disease. J Natl Cancer Inst 81:1097–1101.PubMedCrossRefGoogle Scholar
  8. 8.
    Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh F-M, Lubensky I, Duan DR, Florence C, Pozzatti R, Waether MM, Bander NH, Grossman HB, Brauch H, Pomer S, Brooks ID, Isaacs WB, Lerman MI, Zbar B, Linehan WM (1994) Mutations of the VHL tumor suppressor gene in renal carcinoma. Nat Genet 7:85–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Stolle C, Glenn G, Zbar B, Humphrey JS, Choyke P, Walther M, Pack S, Hurley K, Andrey C, Klausner R, Linehan WM (1998) Improved detection of germline mutations in the von Hippel-Lindau disease tumor tumor suppressor gene. Hum Mutat 12:417–423.PubMedCrossRefGoogle Scholar
  10. 10.
    Shuin T, Kondo K, Torigoe S, Kishida T, Kubita Y, Hosokawa Y, Nagashima Y, Kitamura H, Latif F, Zbar B, Lerman MI, Yao M (1994) Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary renal cell carcinoma. Cancer Res 54:2852–2855.PubMedGoogle Scholar
  11. 11.
    Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan D-SR, Gnarr JR, Linehan WM, Baylin SB (1994) Silencing of the VHL tumor suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91:9700–9704.PubMedCrossRefGoogle Scholar
  12. 12.
    Pause A, Lee S, Worrell RA, Chen DYT, Burgess WH, Linehan WM, Klausner RD (1997) The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 94: 2156–2161.PubMedCrossRefGoogle Scholar
  13. 13.
    Krumm A, Groudine M (1995) Tumor suppression and transcription elongation: the dire consequences of changing partners. Science 269:1400–1401.PubMedCrossRefGoogle Scholar
  14. 14.
    Duan DR, Pause A, Burgers WH, Aso T, Chen DYT, Garret KP, Conaway RC, Conaway JW, Linehan WM, Klausner RD (1995) Inhibition of transcription elongation by VHL tumor suppressor protein. Science 269:1402–1406.PubMedCrossRefGoogle Scholar
  15. 15.
    Aso T, Lane WS, Conaway JW, Conaway RC (1995) Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science 269:1439–1443.PubMedCrossRefGoogle Scholar
  16. 16.
    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskel SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliff PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitilation complex by O2-regulated prolyl hydroxylation. Science 292:468–472.PubMedCrossRefGoogle Scholar
  17. 17.
    Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427.PubMedCrossRefGoogle Scholar
  18. 18.
    Gnarra JR, Zhou S, Merrill MJ, Wagner JR, Krumm A, Papavassiliou E, Oldfield EH, Klausner RD, Linehan WM (1996) Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor-suppressor gene. Proc Natl Acad Sci U S A 93:10589–10594.PubMedCrossRefGoogle Scholar
  19. 19.
    Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Goldberg MA (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci U S A 93:10595–10599.PubMedCrossRefGoogle Scholar
  20. 20.
    Schofield CJ, Ratcliff PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354.PubMedCrossRefGoogle Scholar
  21. 21.
    Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny-Baron G, Marme D (1996) Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res 56:2299–2301.PubMedGoogle Scholar
  22. 22.
    Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER (1998) Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumorigenesis. Genes Chromosom Cancer 22:200–209.PubMedCrossRefGoogle Scholar
  23. 23.
    Martinez A, Fullwood P, Kondo K, Kishida T, Yao M, Maher ER, Latif F (2000) Role of chromosome 3p12-p21 tumor suppressor genes in clear cell renal cell carcinoma: analysis of VHL independent pathways of tumorigenesis. Mol Pathol 53:137–144.PubMedCrossRefGoogle Scholar
  24. 24.
    Li FP, Decker H-JH, Zbar B, Stanton Jr VP, Lovacs G, Seizinger BR, Aburatani H, Sandberg AA, Berg S, Hosoe S, Brown RS (1993) Clinical and genetic studies of renal cell carcinomas in a family with a constitutional chromosome 3;8 translocation: genetics of familial renal cell, carcinoma. Ann Intern Med 118: 106–111.PubMedGoogle Scholar
  25. 25.
    Lubenski J, Hadaczek P, Podolski J, Toloczko A, Sikorski A, McCue P, Gruck T, Huebner K (1994) Common regions of deletion in chromosome regions 3p12 and 3p14.2 in primary clear cell renal carcinoma. Cancer Res 54:3710–3713.Google Scholar
  26. 26.
    Yamakawa K, Morita R, Takahashi E, Hori T, Ishikawa J, Nakamura Y (1991) A detailed deletion mapping of the short arm of chromosome 3 in sporadic renal; cell carcinoma. Cancer Res 51:4707–4711.PubMedGoogle Scholar
  27. 27.
    Wilhelm M, Bugert P, Kenck C, Staehler G, Kovacs G (1995) Terminal deletion of chromosome 3p sequences in nonpapillary renal cell carcinomas: a breakpoint cluster between loci D3S1285 and D2S1603. Cancer Res 55:5383–5385.PubMedGoogle Scholar
  28. 28.
    Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, Siprashvili Z, Mori M, McCue P, Druck T, Croce CM, Huebner K (1996) The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3:8) breakpoint, is abnormal in digestive tract cancer. Cell 84:587–597.PubMedCrossRefGoogle Scholar
  29. 29.
    Yao M, Yoshida M, Kishida T, Nakaigawa N, Baba M, Kobayashi K, Miura T, Moriyama M, Nagashima Y, Nakatani Y, Kubota Y, Kondo K (2002) VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear cell renal carcinoma. J Natl Cancer Inst 94:1569–1575.PubMedGoogle Scholar
  30. 30.
    Kovacs G (1989) Papillary renal cell carcinoma: a morphologic and cytogenetic study of 11 cases. Am J Pathol 134:27–34.PubMedGoogle Scholar
  31. 31.
    Katter MM, Grignon DJ, Wallis T, Haas GP, Sakr WA, Pontes JE, Visscher DW (1997) Clinicopathologic and interphase cytogenetic analysis of papillary (chromophilic) renal cell carcinoma. Mod Pathol 10:1143–1150.Google Scholar
  32. 32.
    Corless CL, Aburatani H, Fletcher JA, Housman D, Amin MB, Weinberg DS (1996) Papillary renal cell carcinoma: quantitation of chromosome 7 and 17 by FISH analysis of 3p for LOH and DNA ploidy. Diagn Mol Pathol 5:53–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Hughson MD, Bigler S, Dickman K, Kovacs G (1999) Renal cell carcinoma of end-stage renal disease: an analysis of chromosome 3,7, and 17 abnormalities by microsatellite amplification. Mod Pathol 12:301–309.PubMedGoogle Scholar
  34. 34.
    Schmidt L, Duh F-M, Chen F, Kishida T, Glenn G, Choyke P, Scherer SW, Zhuang Z, Lubensky I, Dean M, Allikmets R, Chidambaram A, Bergerheim UR, Feltis JT, Casadevall C, Zamarron A, Bernues M, Richard S, Lips CJM, Walther MM, Tsui L-C, Geil L, Orcutt ML, Stackhouse T, Lipan J, Slife L, Brauch H, Decker J, Niehans G, Hughson MD, Moch H, Storkel S, Lerman MI, Linehan WM, Zbar B (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16:68–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Schmidt L, Junker K, Weirich G, Glenn G, Choyke P, Lubensky I, Zhuang Z, Jeffers M, Vande Woude G, Neumann H, Walther M, Linehan WM, Zbar B (1998) Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res 58:1719–1722.PubMedGoogle Scholar
  36. 36.
    Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M, Lubensky I, Neumann HPH, Brauch H, Decker J, Vocke C, Brown JA, Jenkins R, Richard S, Bergerheim U, Gerrard B, Dean M, Linehan WM, Zbar B (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18:2343–2350.PubMedCrossRefGoogle Scholar
  37. 37.
    Lubensky IA, Schmidt L, Zhuang Z, Weirich G, Pack S, Zambrano N, Walther MM, Choyke P, Linehan WM, Zbar B (1999) Hereditary and sporadic papillary renal cell carcinomas with c-met mutations share a distinct morphological phenotype. Am J Pathol 155:517–526.PubMedGoogle Scholar
  38. 38.
    Fisher J, Palmedo G, Bugert P, Prayer-Galeti T, Pagono F, Kovacs G (1998) Duplication and overexpression of the mutant allele of the met proto-oncogene in multiple hereditary renal cell tumors. Oncogene 17:733–739.CrossRefGoogle Scholar
  39. 39.
    Lin Z-H, Han EM, Lee ES, Kim CW, Kim HK, Kim I, Kim Y-S (2004) A distinct expression pattern and point mutation of c-kit in papillary renal cell carcinomas. Mod Pathol 17:611–616.PubMedCrossRefGoogle Scholar
  40. 40.
    Berman J, O’Leary TJ (2001) Gastrointestinal stromal tumor workshop. Hum Pathol 32:578–582.PubMedCrossRefGoogle Scholar
  41. 41.
    Alam NA, Rowan AJ, Wortham NC, Pollard PJ, Mitchell M, Tyrer JP, Barclay E, Calonje E, Manek S, Adams SJ, Bowers PW, Burrows NP, Charles-Holmes R, Cook LJ, Daly BM, Ford GP, Fuller LC, Hadfield-Jones SE, Hardwick N, Highet AS, Keefe M, MacDon-ald-Hull SP, Potts EDA, Crone M, Wilkinson S, Camacho-Martinez F, Jablonska S, Ratnavel R, MacDonald A, Mann RJ, Grice K, Guilett G, Lewis-Jones MS, McGrath H, Seukeran DC, Morrison PJ, Fleming S, Rahman S, Kelsell D, Leigh I, Olpin S, Tomlinson IPM (2003) Genetic and functional analysis of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet 12:1241–1252.PubMedCrossRefGoogle Scholar
  42. 42.
    Launonen V, Vierimaa O, Kiuru M, Isola J, Roth S, Pukkala E, Sistonen P, Herva R, Aaltonen LA (2001) Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci USA 98:3387–3392.PubMedCrossRefGoogle Scholar
  43. 43.
    Kiuru M, Launonen V, Hietala M, Aittomaki K, Vierimaa O, Salovaara R, Arola J, Pukkala E, Sistonen P, Herva R, Aaltonen LA (2001) Familial cutaneous leiomyomatosis is a two-hit condition associated with renal cell cancer of characteristic histopathology. Am J Pathol 159:825–829.PubMedGoogle Scholar
  44. 44.
    Pavlovich CP, Walther MM, Eyler RA, Hewitt SM, Zbar B, Linehan WM, Merino MJ (2002) Renal tumors in the Birt-Hogg-Dube syndrome. Am J Surg Pathol 26:1542–1552.PubMedCrossRefGoogle Scholar
  45. 45.
    Schmidt LS, Warren MB, Nickeerson ML, Weirich G, Matrosova V, Toro JR, Turner ML, Duray P, Merino M, Hewitt S, Pavlovich CP, Glenn G, Greenberg CR, Linehan WR, Zbar B (2001) Birt-Hogg-Dube syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am J Hum Genet 69:876–882.PubMedCrossRefGoogle Scholar
  46. 46.
    Stoerkel S, Steart PV, Drenckhahn, Thoenes W (1989) The human chromophobe cell renal carcinoma: its probable relation to intercalated cells of the collecting duct. Virchows Arch B Cell Pathol 56:237–245.Google Scholar
  47. 47.
    Cohen C, McCue PA, Derose PB (1988) Histogenesis of renal cell carcinoma and renal oncocytoma: an immunohistochemical study. Cancer 62:1946–1951.PubMedCrossRefGoogle Scholar
  48. 48.
    Amin MaB, Amin MiB, Tamboli P, Javidan J, Stricker H, De-Peralta Ventrina M, Deshpande A, Menon M (2002) Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: an experience of 405 cases. Am J Surg Pathol 26:281–291.PubMedCrossRefGoogle Scholar
  49. 49.
    Argani P, Antonescu CR, Coutrier J, Fournet J-C, Sciot R, Debiec-Rychter M, Hutchinson B, Reuter VE, Boccon-Gibod L, Timmons C, Hafez N, Ladanyi M (2002) PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1) (p11.2;q21). Am J Surg Pathol 26:1553–1566.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Personalised recommendations