Sensitisation to Airborne Environmental Allergens: What Do We Know and What are the Problems?

  • W. R. Thomas
  • W. Smith
  • T. K. Heinrich
  • B. J. Hales
Part of the Allergy Frontiers book series (ALLERGY, volume 1)

The most widely distributed sources of allergens are the pyroglyphid Dermato phagoides pteronyssinus and Dermatophagoides farinae mites [1], temperate grass pollens [2] and cats [3]. Other important allergens with less global distributions are birch [4], olive [5], ragweed and mugwort pollens [6]. Cockroach allergy is important for inner-city dwellers in America [7]. Dog allergy has been more evident in regions with low exposure to other allergens but is also a frequent source of sensitisation elsewhere [8]. The glycyphagid mite Blomia tropicalis is important in highly populated tropical and subtropical regions [9]. The conifers Japanese cedar in Japan and mountain cedar in USA and to a lesser degree cypress are regionally important [10]. Allergens from Aspergillus, Alternaria, Cladosporium and Penicillium moulds sensitise 5–10% of most populations and are associated with severe asthma [11]. Emerging sources of sensitisation are domestic exposure to mice in inner city environments, and pollens from the weeds Salsola kali (Russian thistle or tumble weed) and Chenopodium album (lambs quarter or goosefoot) [5]. The pollens occur worldwide but have attracted interest in areas of desertification.


Allergy Clin Immunol House Dust Grass Pollen House Dust Mite Allergen Grass Pollen Allergen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomas WR, Hales BJ (2007) T and B-cell responses to HDM allergens. Immunologic Research 37:187–199.PubMedGoogle Scholar
  2. 2.
    Andersson K, Lidholm J (2003) Characteristics and immunobiology of grass pollen allergens. Int Arch Allergy Immunol 130:87–107.PubMedGoogle Scholar
  3. 3.
    Phipatanakul W (2001) Animal allergens and their control. Curr Allergy Asthma Rep 1:461–465.PubMedGoogle Scholar
  4. 4.
    Ghunaim N, Wickman M, Almqvist C, Soderstrom L, et al (2006) Sensitization to different pollens and allergic disease in 4-year-old Swedish children. Clin Exp Allergy 36:722–727.PubMedGoogle Scholar
  5. 5.
    Rodriguez R, Villalba M, Batanero E, Palomares O, et al (2007) Emerging pollen allergens. Biomed Pharmacother 61:1–7.PubMedGoogle Scholar
  6. 6.
    Gadermaier G, Dedic A, Obermeyer G, Frank S, et al (2004) Biology of weed pollen allergens. Curr Allergy Asthma Rep 4:391–400.PubMedGoogle Scholar
  7. 7.
    Gruchalla RS, Pongracic J, Plaut M, Evans R 3rd, et al (2005) Inner City Asthma Study: relationships among sensitivity, allergen exposure, and asthma morbidity. J Allergy Clin Immunol 115:478–485.PubMedGoogle Scholar
  8. 8.
    Simpson A, Soderstrom L, Ahlstedt S, Murray CS, et al (2005) IgE antibody quantification and the probability of wheeze in preschool children. J Allergy Clin Immunol 116:744–749.PubMedGoogle Scholar
  9. 9.
    Fernandez-Caldas E, Lockey RF (2004) Blomia tropicalis, a mite whose time has come. Allergy 59:1161–1164.PubMedGoogle Scholar
  10. 10.
    Schwietz LA, Goetz DW, Whisman BA, Reid MJ (2000) Cross-reactivity among conifer pollens. Ann Allergy Asthma Immunol 84:87–93.PubMedGoogle Scholar
  11. 11.
    Bush RK, Portnoy JM, Saxon A, Terr AI, et al (2006) The medical effects of mold exposure. J Allergy Clin Immunol 117:326–333.PubMedGoogle Scholar
  12. 12.
    Moverare R, Westritschnig K, Svensson M, Hayek B, et al (2002) Different IgE reactivity profiles in birch pollen-sensitive patients from six European populations revealed by recom-binant allergens: an imprint of local sensitization. Int Arch Allergy Immunol 128:325–335.PubMedGoogle Scholar
  13. 13.
    Zeiss CR, Levitz D, Suszko IM (1978) Quantitation of IgE antibody specific for ragweed and grass allergens: binding of radiolabeled allergens by solid-phase bound IgE. J Allergy Clin Immunol 62:83–90.PubMedGoogle Scholar
  14. 14.
    Trombone AP, Tobias KR, Ferriani VP, Schuurman J, et al (2002) Use of a chimeric ELISA to investigate immunoglobulin E antibody responses to Der p 1 and Der p 2 in mite-allergic patients with asthma, wheezing and/or rhinitis. Clin Exp Allergy 32:1323–8.PubMedGoogle Scholar
  15. 15.
    Hales BJ, Martin AC, Pearce LJ, Laing IA, et al. (2006) IgE and IgG anti-house dust mite specificities in allergic disease. J Allergy Clin Immunol 118:361–367.PubMedGoogle Scholar
  16. 16.
    van Ree R, van Leeuwen WA, Bulder I, Bond J, et al (1999) Purified natural and recombinant Fel d 1 and cat albumin in in vitro diagnostics for cat allergy. J Allergy Clin Immunol 104:1223–1230.PubMedGoogle Scholar
  17. 17.
    Smith W, Butler AJ, Hazell LA, Chapman MD, et al (2004) Fel d 4, a cat lipocalin allergen. Clin Exp Allergy 34:1732–1738.PubMedGoogle Scholar
  18. 18.
    Saarelainen S, Taivainen A, Rytkonen-Nissinen M, Auriola S, et al (2004) Assessment of recombinant dog allergens Can f 1 and Can f 2 for the diagnosis of dog allergy. Clin Exp Allergy 34:1576–1582.PubMedGoogle Scholar
  19. 19.
    Satinover SM, Reefer AJ, Pomes A, Chapman MD, et al (2005) Specific IgE and IgG antibody-binding patterns to recombinant cockroach allergens. J Allergy Clin Immunol 115:803–809.PubMedGoogle Scholar
  20. 20.
    Vailes LD, Perzanowski MS, Wheatley LM, Platts-Mills TA, et al (2001) IgE and IgG antibody responses to recombinant Alt a 1 as a marker of sensitization to Alternaria in asthma and atopic dermatitis. Clin Exp Allergy 31:1891–1895.PubMedGoogle Scholar
  21. 21.
    Crameri R, Lidholm J, Gronlund H, Stuber D, et al (1996) Automated specific IgE assay with recombinant allergens: evaluation of the recombinant Aspergillus fumigatus allergen I in the Pharmacia Cap System. Clin Exp Allergy 26:1411–1419.PubMedGoogle Scholar
  22. 22.
    Simon-Nobbe B, Denk U, Schneider PB, Radauer C, et al (2006) NADP-dependent mannitol dehydrogenase, a major allergen of Cladosporium herbarum. J Biol Chem 281:16354–16360.Google Scholar
  23. 23.
    Rossi RE, Monasterolo G, Monasterolo S (2001) Measurement of IgE antibodies against purified grass-pollen allergens (Phl p 1, 2, 3, 4, 5, 6, 7, 11, and 12) in sera of patients allergic to grass pollen. Allergy 56:1180–1185.PubMedGoogle Scholar
  24. 24.
    Mari A (2003) Skin test with a timothy grass (Phleum pratense) pollen extract vs. IgE to a timothy extract vs. IgE to rPhl p 1, rPhl p 2, nPhl p 4, rPhl p 5, rPhl p 6, rPhl p 7, rPhl p 11, and rPhl p 12: epidemiological and diagnostic data. Clin Exp Allergy 33:43–51.PubMedGoogle Scholar
  25. 25.
    Rossi RE, Monasterolo G, Monasterolo S (2003) Detection of specific IgE antibodies in the sera of patients allergic to birch pollen using recombinant allergens Bet v 1, Bet v 2, Bet v 4: evaluation of different IgE reactivity profiles. Allergy 58:929–932.PubMedGoogle Scholar
  26. 26.
    Hales BJ, Laing IA, Pearce LJ, Hazell LA, et al (2007) Distinctive IgE and IgG4 anti-house dust allergen-binding specificities in a tropical Australian Aboriginal Community. Clin Exp Allergy 37:1357–1363.PubMedGoogle Scholar
  27. 27.
    Erwin EA, Custis NJ, Satinover SM, Perzanowski MS, et al (2005) Quantitative measurement of IgE antibodies to purified allergens using streptavidin linked to a high-capacity solid phase. J Allergy Clin Immunol 115:1029–1035.PubMedGoogle Scholar
  28. 28.
    Matsui EC, Eggleston PA, Breysse PN, Rand CS, et al (2007) Mouse allergen-specific antibody responses in inner-city children with asthma. J Allergy Clin Immunol 119:910–5.PubMedGoogle Scholar
  29. 29.
    Niederberger V, Stubner P, Spitzauer S, Kraft D, et al (2001) Skin test results but not serology reflect immediate type respiratory sensitivity: a study performed with recombinant allergen molecules. J Invest Dermatol 117:848–851.PubMedGoogle Scholar
  30. 30.
    Flicker S, Steinberger P, Ball T, Krauth MT, et al (2006) Spatial clustering of the IgE epitopes on the major timothy grass pollen allergen Phl p 1: importance for allergenic activity. J Allergy Clin Immunol 117:1336–1343.PubMedGoogle Scholar
  31. 31.
    Lind P, Hansen OC, Horn N (1988) The binding of mouse hybridoma and human IgE antibodies to the major fecal allergen, Der p I, of Dermatophagoides pteronyssinus. Relative binding site location and species specificity studied by solid-phase inhibition assays with radiolabeled antigen. J Immunol 140:4256–4262.Google Scholar
  32. 32.
    Chapman MD, Heymann PW, Platts-Mills TA (1987) Epitope mapping of two major inhalant allergens, Der p I and Der f I, from mites of the genus Dermatophagoides. J Immunol 139:1479–1484.PubMedGoogle Scholar
  33. 33.
    Mueller GA, Smith AM, Chapman MD, Rule GS, et al (2001) Hydrogen exchange nuclear magnetic resonance spectroscopy mapping of antibody epitopes on the house dust mite allergen Der p 2. J Biol Chem 276:9359–9365.PubMedGoogle Scholar
  34. 34.
    Holm J, Gajhede M, Ferreras M, Henriksen A, et al (2004) Allergy vaccine engineering: epitope modulation of recombinant Bet v 1 reduces IgE binding but retains protein folding pattern for induction of protective blocking-antibody responses. J Immunol 173:5258–5267.PubMedGoogle Scholar
  35. 35.
    Andreasson U, Flicker S, Lindstedt M, Valenta R, et al (2006) The human IgE-encoding tran-scriptome to assess antibody repertoires and repertoire evolution. J Mol Biol 362:212–227.PubMedGoogle Scholar
  36. 36.
    de Halleux S, Stura E, VanderElst L, Carlier V, et al (2006) Three-dimensional structure and IgE-binding properties of mature fully active Der p 1, a clinically relevant major allergen. J Allergy Clin Immunol 117:571–576.PubMedGoogle Scholar
  37. 37.
    Scholl I, Kalkura N, Shedziankova Y, Bergmann A, et al (2005) Dimerization of the major birch pollen allergen Bet v 1 is important for its in vivo IgE-cross-linking potential in mice. J Immunol 175:6645–6650.PubMedGoogle Scholar
  38. 38.
    Kaiser L, Gronlund H, Sandalova T, Ljunggren HG, et al (2003) The crystal structure of the major cat allergen Fel d 1, a member of the secretoglobin family. J Biol Chem 278:37730–37735.PubMedGoogle Scholar
  39. 39.
    Rajashankar K, Bufe A, Weber W, Eschenburg S, et al (2002) Structure of the functional domain of the major grass-pollen allergen Phlp 5b. Acta Crystallogr D Biol Crystallogr 58:1175–1181.PubMedGoogle Scholar
  40. 40.
    De Vouge MW, Thaker AJ, Curran IH, Zhang L, et al (1996) Isolation and expression of a cDNA clone encoding an Alternaria alternata Alt a 1 subunit. Int Arch Allergy Immunol 111:385–395.PubMedGoogle Scholar
  41. 41.
    Kamata Y, Miyanomae A, Nakayama E, Miyanomae T, et al (2007) Characterization of dog allergens Can f 1 and Can f 2. 2. A comparison of Can f 1 with Can f 2 regarding their biochemical and immunological properties. Int Arch Allergy Immunol 142:301–308.Google Scholar
  42. 42.
    Lascombe MB, Gregoire C, Poncet P, Tavares GA, et al (2000) Crystal structure of the allergen Equ c 1. A dimeric lipocalin with restricted IgE-reactive epitopes. J Biol Chem 275:21572–21577.Google Scholar
  43. 43.
    Nopp A, Johansson SG, Lundberg M, Oman H (2006) Simultaneous exposure of several allergens has an additive effect on multisensitized basophils. Allergy 61:1366–1368.PubMedGoogle Scholar
  44. 44.
    Pittner G, Vrtala S, Thomas WR, Weghofer M, et al (2004) Component-resolved diagnosis of house-dust mite allergy with purified natural and recombinant mite allergens. Clin Exp Allergy 34:597–603.PubMedGoogle Scholar
  45. 45.
    Wicklein D, Lindner B, Moll H, Kolarich D, et al (2004) Carbohydrate moieties can induce mediator release: a detailed characterization of two major timothy grass pollen allergens. Biol Chem 385:397–407.PubMedGoogle Scholar
  46. 46.
    Adedoyin J, Gronlund H, Oman H, Johansson SG, et al (2007) Cat IgA, representative of new carbohydrate cross-reactive allergens. J Allergy Clin Immunol 119:640–645.PubMedGoogle Scholar
  47. 47.
    Shibasaki M, Noguchi E, Takeda K, Takita H (1997) Distribution of IgE and IgG antibody levels against house dust mites in schoolchildren, and their relation with asthma. J Asthma 34:235–242.PubMedGoogle Scholar
  48. 48.
    Robertson CF, Price D, Henry R, Mellis C, et al (2007) Short-course montelukast for intermittent asthma in children: a randomized controlled trial. Am J Respir Crit Care Med 175:323–329.PubMedGoogle Scholar
  49. 49.
    Takhar P, Smurthwaite L, Coker HA, Fear DJ, et al (2005) Allergen drives class switching to IgE in the nasal mucosa in allergic rhinitis. J Immunol 174:5024–5032.PubMedGoogle Scholar
  50. 50.
    Coker HA, Harries HE, Banfield GK, Carr VA , et al (2005) Biased use of VH5 IgE-positive B cells in the nasal mucosa in allergic rhinitis. J Allergy Clin Immunol 116:445–452.PubMedGoogle Scholar
  51. 51.
    Pilette C, Nouri-Aria KT, Jacobson MR, Wilcock LK, et al (2007) Grass pollen immuno-therapy induces an allergen-specific IgA2 antibody response associated with mucosal TGF-beta expression. J Immunol 178:4658–4666.PubMedGoogle Scholar
  52. 52.
    Platts-Mills TA (1979) Local production of IgG, IgA and IgE antibodies in grass pollen hay fever. J Immunol 122:2218–2225.Google Scholar
  53. 53.
    Platts-Mills TA, von Maur RK, Ishizaka K, Norman PS, et al (1976) IgA and IgG anti-ragweed antibodies in nasal secretions. Quantitative measurements of antibodies and correlation with inhibition of histamine release. J Clin Invest 57:1041–1050.Google Scholar
  54. 54.
    Benson M, Reinholdt J, Cardell LO (2003) Allergen-reactive antibodies are found in nasal fluids from patients with birch pollen-induced intermittent allergic rhinitis, but not in healthy controls. Allergy 58:386–392.PubMedGoogle Scholar
  55. 55.
    Platts-Mills T, Vaughan J, Squillace S, Woodfolk J, et al (2001) Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet 357:752–756.Google Scholar
  56. 56.
    Custis NJ, Woodfolk JA, Vaughan JW, Platts-Mills TA (2003) Quantitative measurement of airborne allergens from dust mites, dogs, and cats using an ion-charging device. Clin Exp Allergy 33:986–991.PubMedGoogle Scholar
  57. 57.
    Jarvis D, Zock JP, Heinrich J, Svanes C, et al (2007) Cat and dust mite allergen levels, specific IgG and IgG4, and respiratory symptoms in adults. J Allergy Clin Immunol 119:697–704.PubMedGoogle Scholar
  58. 58.
    Custovic A, Green R, Fletcher A, Smith A, et al (1997) Aerodynamic properties of the major dog allergen Can f 1: distribution in homes, concentration, and particle size of allergen in the air. Am J Respir Crit Care Med 155:94–98.PubMedGoogle Scholar
  59. 59.
    Viander M, Nieminen E, Valovirta E, Vanto T, et al (1987) A sandwich enzyme immunoassay for the detection of human IgG antibodies to dog allergens. Int Arch Allergy Appl Immunol 83:64–71.PubMedGoogle Scholar
  60. 60.
    Matsui EC, Diette GB, Krop EJ, Aalberse RC, et al (2006) Mouse allergen-specific immu-noglobulin G4 and risk of mouse skin test sensitivity. Clin Exp Allergy 36:1097–1103.PubMedGoogle Scholar
  61. 61.
    Rossi RE, Monasterolo G (2004) Evaluation of recombinant and native timothy pollen (rPhl p 1, 2, 5, 6, 7, 11, 12 and nPhl p 4)- specific IgG4 antibodies induced by subcutaneous immu-notherapy with timothy pollen extract in allergic patients. Int Arch Allergy Immunol 135:44–53.PubMedGoogle Scholar
  62. 62.
    Van Der Veen MJ, Jansen HM, Aalberse RC, van der Zee JS (2001) Der p 1 and Der p 2 induce less severe late asthmatic responses than native Dermatophagoides pteronyssinus extract after a similar early asthmatic response. Clin Exp Allergy 31:705–714.Google Scholar
  63. 63.
    Assing K, Nielsen CH, Poulsen LK (2006) Immunological characteristics of subjects with asymptomatic skin sensitization to birch and grass pollen. Clin Exp Allergy 36:283–292.PubMedGoogle Scholar
  64. 64.
    Richards D, Chapman MD, Sasama J, Lee TH, et al (1997) Immune memory in CD4 + CD45RA + T cells. Immunology 91:331–339.PubMedGoogle Scholar
  65. 65.
    Burastero SE, Fenoglio D, Crimi E, Brusasco V, et al. (1993) Frequency of allergen-specific T lymphocytes in blood and bronchial response to allergen in asthma. J Allergy Clin Immunol 91:1075–81.PubMedGoogle Scholar
  66. 66.
    Gabaglia CR, Valle MT, Fenoglio D, Barcinski MA, et al. (2000) Cd4(+) T cell response to Leishmania spp. in non-infected individuals. Hum Immunol 61:531–7.Google Scholar
  67. 67.
    van Neerven R, Wissenbach M, Ipsen H, Bufe A, et al (1999) Differential recognition of recombinant Phl p 5 isoallergens by Phl p 5-specific T cells. Int Arch Allergy Immunol 118:125–128.PubMedGoogle Scholar
  68. 68.
    Burton MD, Papalia L, Eusebius NP, O'Hehir RE, et al (2002) Characterization of the human T cell response to rye grass pollen allergens Lol p 1 and Lol p 5. Allergy 57:1136–1144.PubMedGoogle Scholar
  69. 69.
    Ebner C, Schenk S, Najafian N, Siemann U, et al (1995) Nonallergic individuals recognize the same T cell epitopes of Bet v 1, the major birch pollen allergen, as atopic patients. J Immunol 154:1932–1940.PubMedGoogle Scholar
  70. 70.
    Jahn-Schmid B, Fischer GF, Bohle B, Fae I, et al (2005) Antigen presentation of the immuno-dominant T-cell epitope of the major mugwort pollen allergen, Art v 1, is associated with the expression of HLA-DRB1 *01. J Allergy Clin Immunol 115:399–404.Google Scholar
  71. 71.
    O'Brien RM, Thomas WR, Wootton AM (1992) T cell responses to the purified major allergens from the house dust mite Dermatophagoides pteronyssinus. J Allergy Clin Immunol 89:1021–1031.PubMedGoogle Scholar
  72. 72.
    Reefer AJ, Carneiro RM, Custis NJ, Platts-Mills TA, et al (2004) A role for IL-10-mediated HLA-DR7-restricted T cell-dependent events in development of the modified Th2 response to cat allergen. J Immunol 172:2763–2772.PubMedGoogle Scholar
  73. 73.
    Akdis M, Verhagen J, Taylor A, Karamloo F, et al (2004) Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med 199:1567–1575.PubMedGoogle Scholar
  74. 74.
    O'Brien RM, Xu H, Rolland JM, Byron KA, et al (2000) Allergen-specific production of interferon-gamma by peripheral blood mononuclear cells and CD8 T cells in allergic disease and following immunotherapy. Clin Exp Allergy 30:333–340.PubMedGoogle Scholar
  75. 75.
    Smart JM, Kemp AS (2002) Increased Th1 and Th2 allergen-induced cytokine responses in children with atopic disease. Clin Exp Allergy 32:796–802.PubMedGoogle Scholar
  76. 76.
    Heaton T, Rowe J, Turner S, Aalberse RC, et al (2005) An immunoepidemiological approach to asthma: identification of in-vitro T-cell response patterns associated with different wheezing phenotypes in children. Lancet 365:142–149.PubMedGoogle Scholar
  77. 77.
    Cho SH, Stanciu LA, Holgate ST, Johnston SL (2005) Increased interleukin-4, interleukin-5, and interferon-gamma in airway CD4 + and CD8 + T cells in atopic asthma. Am J Respir Crit Care Med 171:224–230.PubMedGoogle Scholar
  78. 78.
    Allakhverdi Z, Comeau MR, Jessup HK, Yoon BR, et al (2007) Thymic stromal lymphopoi-etin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 204:253–258.PubMedGoogle Scholar
  79. 79.
    Rochman I, Watanabe N, Arima K, Liu YJ, et al (2007) Cutting edge: Direct action of thymic stromal lymphopoietin on activated human CD4 + T cells. J Immunol 178:6720–6724.PubMedGoogle Scholar
  80. 80.
    Hartl D, Griese M, Nicolai T, Zissel G, et al (2005) Pulmonary chemokines and their receptors differentiate children with asthma and chronic cough. J Allergy Clin Immunol 115:728–736.PubMedGoogle Scholar
  81. 81.
    Panina-Bordignon P, Papi A, Mariani M, Di Lucia P, et al (2001) The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 107:1357–1364.PubMedGoogle Scholar
  82. 82.
    Liu L, Jarjour NN, Busse WW, Kelly EA (2004) Enhanced generation of helper T type 1 and 2 chemokines in allergen-induced asthma. Am J Respir Crit Care Med 169:1118–1124.PubMedGoogle Scholar
  83. 83.
    Bochner BS, Hudson SA, Xiao HQ, Liu MC (2003) Release of both CCR4-active and CXCR3-active chemokines during human allergic pulmonary late-phase reactions. J Allergy Clin Immunol 112:930–934.PubMedGoogle Scholar
  84. 84.
    Simons FE, Shikishima Y, Van Nest G, Eiden JJ, et al (2004) Selective immune redirection in humans with ragweed allergy by injecting Amb a 1 linked to immunostimulatory DNA. J Allergy Clin Immunol 113:1144–1151.PubMedGoogle Scholar
  85. 85.
    Thottingal TB, Stefura BP, Simons FE, Bannon GA, et al (2006) Human subjects without peanut allergy demonstrate T cell-dependent, TH2-biased, peanut-specific cytokine and chemokine responses independent of TH1 expression. J Allergy Clin Immunol 118:905–914.PubMedGoogle Scholar
  86. 86.
    Blumenthal MN, Langefeld CD, Barnes KC, Ober C, et al (2006) A genome-wide search for quantitative trait loci contributing to variation in seasonal pollen reactivity. J Allergy Clin Immunol 117:79–85.PubMedGoogle Scholar
  87. 87.
    Higgins JA, Thorpe CJ, Hayball JD, O'Hehir RE, et al (1994) Overlapping T-cell epitopes in the group I allergen of Dermatophagoides species restricted by HLA-DP and HLA-DR class II molecules. J Allergy Clin Immunol 93:891–899.PubMedGoogle Scholar
  88. 88.
    Hales BJ, Thomas WR. (1997) T-cell sensitization to epitopes from the house dust mites Dermatophagoides pteronyssinusand Euroglyphus maynei. Clin Exp Allergy 27:868–875.PubMedGoogle Scholar
  89. 89.
    Kircher MF, Haeusler T, Nickel R, Lamb JR, et al (2002) Vbeta18.1(+) and V(alpha)2.3(+) T-cell subsets are associated with house dust mite allergy in human subjects. J Allergy Clin Immunol 109:517–523.PubMedGoogle Scholar
  90. 90.
    Wedderburn LR, O'Hehir RE, Hewitt CR, Lamb JR, et al (1993) In vivo clonal dominance and limited T-cell receptor usage in human CD4 + T-cell recognition of house dust mite allergens. Proc Natl Acad Sci U S A 90:8214–8218.PubMedGoogle Scholar
  91. 91.
    Macaubas C, Sly PD, Burton P, Tiller K, et al (1999) Regulation of T-helper cell responses to inhalant allergen during early childhood. Clin Exp Allergy 29:1223–1231.PubMedGoogle Scholar
  92. 92.
    Hales BJ, Hazell LA, Smith W, Thomas WR (2002) Genetic variation of Der p 2 allergens: effects on T cell responses and immunoglobulin E binding. Clin Exp Allergy 32:1461–1467.PubMedGoogle Scholar
  93. 93.
    Matsumoto K, Gauvreau GM, Rerecich T, Watson RM, et al (2002) IL-10 production in circulating T cells differs between allergen-induced isolated early and dual asthmatic responders. J Allergy Clin Immunol 109:281–286.PubMedGoogle Scholar
  94. 94.
    Imada M, Simons FE, Jay FT, HayGlass KT (1995) Antigen mediated and polyclonal stimulation of human cytokine production elicit qualitatively different patterns of cytokine gene expression. Int Immunol 7:229–237.PubMedGoogle Scholar
  95. 95.
    Robinson DS, Tsicopoulos A, Meng Q, Durham S, et al (1996) Increased interleukin-10 messenger RNA expression in atopic allergy and asthma. Am J Respir Cell Mol Biol 14:113–117.PubMedGoogle Scholar
  96. 96.
    Jutel M, Akdis M, Budak F, Aebischer-Casaulta C, et al (2003) IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol 33:1205–1214.PubMedGoogle Scholar
  97. 97.
    Redington AE, Madden J, Frew AJ, Djukanovic R, et al (1997) Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 156:642–647.Google Scholar
  98. 98.
    Ling EM, Smith T, Nguyen XD, Pridgeon C, et al (2004) Relation of CD4 + CD25 + regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 363:608–615.PubMedGoogle Scholar
  99. 99.
    Bellinghausen I, Klostermann B, Knop J, Saloga J (2003) Human CD4 + CD25 + T cells derived from the majority of atopic donors are able to suppress TH1 and TH2 cytokine production. J Allergy Clin Immunol 111:862–868.PubMedGoogle Scholar
  100. 100.
    Taylor AL, Hale J, J. HB, Dunstan JA, et al (2007) FOXP3 mRNA expression at 6 months of age is not affected by giving probiotics from birth, but is higher in infants who develop atopic dermatitis. Pediatr Allergy Immunol 18:10–19.PubMedGoogle Scholar
  101. 101.
    Pillai V, Ortega SB, Wang CK, Karandikar NJ (2007) Transient regulatory T-cells: a state attained by all activated human T-cells. Clin Immunol 123:18–29.PubMedGoogle Scholar
  102. 102.
    Peat JK, Tovey E, Toelle BG, Haby MM, et al (1996) House dust mite allergens. A major risk factor for childhood asthma in Australia. Am J Respir Crit Care Med 153:141–146.Google Scholar
  103. 103.
    Lau S, Illi S, Sommerfeld C, Niggemann B, et al (2000) Early exposure to house-dust mite and cat allergens and development of childhood asthma: a cohort study. Multicentre Allergy Study Group. Lancet 356:1392–1397.Google Scholar
  104. 104.
    Vervloet D, de Andrade AD, Pascal L, Lanteaume A, et al (1999) The prevalence of reported asthma is independent of exposure in house dust mite-sensitized children. Eur Respir J 13:983–987.PubMedGoogle Scholar
  105. 105.
    Cullinan P, MacNeill SJ, Harris JM, Moffat S, et al (2004) Early allergen exposure, skin prick responses, and atopic wheeze at age 5 in English children: a cohort study. Thorax 59:855–861.PubMedGoogle Scholar
  106. 106.
    Schram-Bijkerk D, Doekes G, Boeve M, Douwes J, et al (2006) Nonlinear relations between house dust mite allergen levels and mite sensitization in farm and nonfarm children. Allergy 61:640–647.Google Scholar
  107. 107.
    Lowe LA, Woodcock A, Murray CS, Morris J, et al (2004) Lung function at age 3 years: effect of pet ownership and exposure to indoor allergens. Arch Pediatr Adolesc Med 158:996–1001.PubMedGoogle Scholar
  108. 108.
    Erwin EA, Wickens K, Custis NJ, Siebers R, et al (2005) Cat and dust mite sensitivity and tolerance in relation to wheezing among children raised with high exposure to both allergens. J Allergy Clin Immunol 115:74–79.PubMedGoogle Scholar
  109. 109.
    Lau S, Illi S, Platts-Mills TA, Riposo D, et al (2005) Longitudinal study on the relationship between cat allergen and endotoxin exposure, sensitization, cat-specific IgG and development of asthma in childhood—report of the German Multicentre Allergy Study (MAS 90). Allergy 60:766–773.PubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • W. R. Thomas
    • 1
  • W. Smith
    • 1
  • T. K. Heinrich
    • 1
  • B. J. Hales
    • 1
  1. 1.Telethon Institute for Child Health ResearchSubiacoAustralia

Personalised recommendations