Role of Allergens in Airway Disease and Their Interaction with the Airway Epithelium

  • Irene Heijink
  • Henk F. Kauffman
Part of the Allergy Frontiers book series (ALLERGY, volume 1)

The epithelial surface of the airways is an ingenious system for exchange of gases, inhaled oxygen for exhaled carbon dioxide, and an important contact organ with inhaled bioorganic substances from the outside world. By a sensitive intercellular contact system, the epithelial cell layer carefully selects which (small) ions and bioorganic molecules are allowed to be transferred over the epithelial layer. Contact between the outside world and the lung tissue is critical for transfer of bioorganic molecules over the epithelial layer. Integrity of the epithelial cell layer is therefore one of the major hallmarks for a balanced ecology of the immune system. Disturbed interactions with inhaled bioorganic molecules from the outside world may finally lead to hyperresponsiveness of the airways to environmental factors in asthmatic patients. Generally, this bronchial hyperresponsiveness (BHR) in asthmatic reactions maybe in part due to airway remodeling as a result of failure intercellular interactions that determine the integrity of the epithelial layer and/or disruption of integrity by (aggressive) components present in inhaled biological substances (antigens/allergens). When the epithelial barrier is disrupted, a repair response will be initiated, in which epithelial cells adopt a migratory phenotype to cover the area of damage. In addition, the epithelial cells will be activated with respect to secretion of growth factors and also proinflammatory cytokines in order to alarm the environment. Subsequently, cells will proliferate and finally redifferentiate to form a functionally intact epithelial barrier. The repair response maybe aggravated by a genetically determined Th2-type immunological response. The release of growth factors and airway inflammation are basic to the airway remodeling as is seen in allergen-driven asthmatic reactions. In this chapter, we will describe the characteristics of aeroallergens and their interaction with the airway epithelial cells of asthmatic individuals with emphasis on the vulnerability of the epithelial cell layer due to integrity/connectivity, resulting in a continuous state of repair and remodeling of airways in asthmatic patients.


Allergy Clin Immunol Airway Epithelial Cell Airway Epithelium Epithelial Cell Layer House Dust Mite Allergen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holgate ST, Polosa R (2006) The mechanisms, diagnosis, and management of severe asthma in adults. Lancet 368:780–793PubMedGoogle Scholar
  2. 2.
    Holgate ST, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL (2000) Epithelial—mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 105:193–204PubMedGoogle Scholar
  3. 3.
    Mori L, Kleimberg J, Mancini C, Bellini A, Marini M, Mattoli S (1995) Bronchial epithelial cells of atopic patients with asthma lack the ability to inactivate allergens. Biochem Biophys Res Commun 217:817–824PubMedGoogle Scholar
  4. 4.
    Zabner J, Winter MC, Shasby S, Ries D, Shasby DM (2003) Histamine decreases E-cadherin-based adhesion to increase permeability of human airway epithelium. Chest 123:385SPubMedGoogle Scholar
  5. 5.
    Goto Y, Uchida Y, Nomura A, Sakamoto T, Ishii Y, Morishima Y, Masuyama K, Sekizawa K (2000) Dislocation of E-cadherin in the airway epithelium during an antigen-induced asthmatic response. Am J Respi Cell Mol Biol 23:712–718Google Scholar
  6. 6.
    Masuyama K, Morishima Y, Ishii Y, Nomura A, Sakamoto T, Kimura T, Mochizuki M, Uchida Y, Sekizawa K (2003) Sputum E-cadherin and asthma severity. J Allergy Clin Immunol 112:208–209PubMedGoogle Scholar
  7. 7.
    Trautmann A, Kruger K, Akdis M, Muller-Wening D, Akkaya A, Brocker EB, Blaser K, Akdis CA (2005) Apoptosis and loss of adhesion of bronchial epithelial cells in asthma. Int Arch Allergy Immunol 138:142–150PubMedGoogle Scholar
  8. 8.
    Kabesch M, Carr D, Weiland SK, von Mutius E (2004) Association between polymorphisms in serine protease inhibitor, kazal type 5 and asthma phenotypes in a large German population sample. Clin Exp Allergy 34:340–345PubMedGoogle Scholar
  9. 9.
    Jongepier H, Koppelman GH, Nolte IM, Bruinenberg M, Bleecker ER, Meyers DA, te Meerman GJ, Postma DS (2005) Polymorphisms in SPINK5 are not associated with asthma in a Dutch population. J Allergy Clin Immunol 115:486–492PubMedGoogle Scholar
  10. 10.
    Boxall C, Holgate ST, Davies DE (2006) The contribution of transforming growth factor-beta and epidermal growth factor signalling to airway remodelling in chronic asthma. Eur Respir J 27:208–229PubMedGoogle Scholar
  11. 11.
    Knight DA, Holgate ST (2003) The airway epithelium: structural and functional properties in health and disease. Respirology 8:432–446PubMedGoogle Scholar
  12. 12.
    Puddicombe SM, Polosa R, Richter A, Krishna MT, Howarth PH, Holgate ST, Davies DE (2000) Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J 14:1362–1374PubMedGoogle Scholar
  13. 13.
    Silverman ES, Palmer LJ, Subramaniam V, Hallock A, Mathew S, Vallone J, Faffe DS, Shikanai T, Raby BA, Weiss ST, Shore SA (2004) Transforming growth factor-beta1 promoter polymorphism C-509T is associated with asthma. Am J Respir Crit Care Med 169:214–219PubMedGoogle Scholar
  14. 14.
    Foley SC, Mogas AK, Olivenstein R, Fiset PO, Chakir J, Bourbeau J, Ernst P, Lemiere C, Martin JG, Hamid Q (2007) Increased expression of ADAM33 and ADAM8 with disease progression in asthma. J Allergy Clin Immunol 119:863–871PubMedGoogle Scholar
  15. 15.
    Holgate ST, Yang Y, Haitchi HM, Powell RM, Holloway JW, Yoshisue H, Pang Y Y, Cakebread J, Davies DE (2006) The genetics of asthma: ADAM33 as an example of a susceptibility gene. Proc Am Thorac Soc 3:440–443PubMedGoogle Scholar
  16. 16.
    Gosman MME, Boezen HM, van Diemen C, Snoeck-Stroband JB, Lapperre TS, Hiemstra PS, ten Hacken NHT, Stolk J, Postma DS (2007) A disintegrin and metalloprotease 33 and chronic obstructive pulmonary disease pathophysiology. Thorax 62:242–247PubMedGoogle Scholar
  17. 17.
    van Diemen CC, Postma DS, Vonk JM, Bruinenberg M, Schouten JP, Boezen HM (2005) A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am J Respir Crit Care Med 172:329–333PubMedGoogle Scholar
  18. 18.
    Jongepier H, Boezen HM, Dijkstra A, Howard TD, Vonk JM, Koppelman GH, Zheng SL, Meyers DA, Bleecker ER, Postma DS (2004) Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin Exp Allergy 34:757–760PubMedGoogle Scholar
  19. 19.
    Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, Torrey D, Pandit S, McKenny J, Braunschweiger K, Walsh A, Liu Z, Hayward B, Folz C, Manning SP, Bawa A, Saracino L, Thackston M, Benchekroun Y, Capparell N, Wang M, Adair R, Feng Y, Dubois J, FitzGerald MG, Huang H, Gibson R, Allen KM, Pedan A, Danzig MR, Umland SP, Egan RW, Cuss FM, Rorke S, Clough JB, Holloway JW, Holgate ST, Keith TP (2002) Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418:426–430PubMedGoogle Scholar
  20. 20.
    King NE, Zimmermann N, Pope SM, Fulkerson PC, Nikolaidis NM, Mishra A, Witte DP, Rothenberg ME (2004) Expression and regulation of a disintegrin and metalloproteinase (ADAM) 8 in experimental asthma. Am J Respir Cell Mol Biol 31:257–265PubMedGoogle Scholar
  21. 21.
    Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, De Strooper B, Hartmann D, Saftig P (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci USA 102:9182–9187PubMedGoogle Scholar
  22. 22.
    Hirao T, Nanba D, Tanaka M, Ishiguro H, Kinugasa Y, Doki Y, Yano M, Matsuura N, Higashiyama S (2006) Overexpression of ADAM9 enhances growth factor-mediated recycling of E-cadherin in human colon cancer cell line HT29 cells. Exp Cell Res 312:331–339PubMedGoogle Scholar
  23. 23.
    Tanaka H, Miyazaki N, Oashi K, Tanaka S, Ohmichi M, Abe S (2000) Sputum matrix metal-loproteinase-9: tissue inhibitor of metalloproteinase-1 ratio in acute asthma. J Allergy Clin Immunol 105:900–905PubMedGoogle Scholar
  24. 24.
    Nakashima K, Hirota T, Obara K, Shimizu M, Doi S, Fujita K, Shirakawa T, Enomoto T, Yoshihara S, Ebisawa M, Matsumoto K, Saito H, Suzuki Y, Nakamura Y, Tamari M (2006) A functional polymorphism in MMP-9 is associated with childhood atopic asthma. Biochem Biophys Res Commun 344:300–307PubMedGoogle Scholar
  25. 25.
    Lose F, Thompson PJ, Duffy D, Stewart GA, Kedda MA (2005) A novel tissue inhibitor of metalloproteinase-1 (TIMP-1) polymorphism associated with asthma in Australian women. Thorax 60:623–628PubMedGoogle Scholar
  26. 26.
    Kauffman HF, Tomee JFC (1999) Inflammatory cells and airway defense against Aspergillus fumigatus. Immunol Allergy Clin North Am 18:619–640Google Scholar
  27. 27.
    Brunekreef B, Hoek G, Fischer P, Spieksma FT (2000) Relation between airborne pollen concentrations and daily cardiovascular and respiratory-disease mortality. Lancet 355:1517–1518PubMedGoogle Scholar
  28. 28.
    Hiemstra PS, Fernie-King BA, McMichael J, Lachmann PJ, Sallenave JM (2004) Antimicrobial peptides: Mediators of innate immunity as templates for the development of novel anti-infective and immune therapeutics. Curr Pharmaceut Design 10:2891–2905Google Scholar
  29. 29.
    Gallo RL, Murakami M, Ohtake T, Zaiou M (2002) Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol 110:823–831PubMedGoogle Scholar
  30. 30.
    Tomee JFC, Hiemstra PS, Heinzel-Wieland R, Kauffman HF (1997) Antileukoprotease: An endogenous protein in the innate mucosal defense against fungi. J Infect Dis 176:740–747PubMedGoogle Scholar
  31. 31.
    LeVine AM, Whitsett JA, Hartshorn KL, Crouch EC, Korfhagen TR (2001) Surfactant protein D enhances clearance of influenza A virus from the lung in vivo. J Immunol 167:5868–5873PubMedGoogle Scholar
  32. 32.
    McCormack FX, Whitsett JA (2002) The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest 109:707–712PubMedGoogle Scholar
  33. 33.
    Drickamer K, Dordal MS, Reynolds L (1986) Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. Complete primary structures and homology with pulmonary surfactant apoprotein. J Biol Chem 261:6878–6887Google Scholar
  34. 34.
    Kauffman HF (2006) Innate immune responses to environmental allergens. Clin Rev Allergy Immunol 30:129–140PubMedGoogle Scholar
  35. 35.
    Kauffman HF, Tamm M, Timmerman JA, Borger P (2006) House dust mite major allergens Der p1 and Der p5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms. Clin Mol Allergy 4:5PubMedGoogle Scholar
  36. 36.
    Kauffman HF, Timmerman AJ, Borger P (2001) Protease dependent and independent activation of airway derived epithelial cells bij house dust mite allergens, Der p 1 and Der p 5. J Allergy Clin Immunol 107:S39-Google Scholar
  37. 37.
    Thompson PJ (1998) Unique role of allergens and the epithelium in asthma. Clin Exp Allergy 28:110–116PubMedGoogle Scholar
  38. 38.
    Kauffman HF, Tomee JFC, Werf TSvd, Monchy JGRd, Koeter GH (1995) Review of fungus-induced asthmatic reactions. Am J Respir Crit Care Med. 151:2109–2116PubMedGoogle Scholar
  39. 39.
    Tomee JF, Wierenga ATJ, Hiemstra PS, Kauffman HF (1997) Proteases from Aspergillus fumigatus induce release of proinflammatory cytokines and cell detachment in airway epithelial cell lines. J Infect Dis 176:300–303PubMedGoogle Scholar
  40. 40.
    Kauffman HF, Tomee JF, van de Riet MA, Timmerman AJ, Borger P (2000) Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol 105:1185–1193PubMedGoogle Scholar
  41. 41.
    Tomee JFC, Weissenbruch Rv, Monchy JGR, Kauffman HF (1998) Interactions between inhalant allergen extracts and airway epithelial cells: effect on cytokine production and cell detachment. J Allergy Clin Immunol 102:75–85PubMedGoogle Scholar
  42. 42.
    Winton HL, Wan H, Cannell MB, Gruenert DC, Thompson PJ, Garrod DR, Stewart GA, Robinson C (1998) Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. Clin Exp Allergy 28:1273–1285PubMedGoogle Scholar
  43. 43.
    King C, Brennan S, Thompson PJ, Stewart GA (1998) Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol 161:3645–3651PubMedGoogle Scholar
  44. 44.
    Wan H, Winton HL, Soeller C, Gruenert DC, Thompson PJ, Cannell MB, Stewart GA, Garrod DR, Robinson C (2000) Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen der p 1 [in process citation]. Clin Exp Allergy 30:685–698PubMedGoogle Scholar
  45. 45.
    Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, Robinson C (1999) Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions [see comments]. J Clin Invest 104:123–133PubMedGoogle Scholar
  46. 46.
    Herbert CA, King CM, Ring PC, Holgate S, Stewart AG, Thompson PJ, Robinson C (1995) Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. Am J Respir Crit Care Med 12:369–378Google Scholar
  47. 47.
    Janeway CA (1989) Natural killer cells. A primitive immune system. Nature 341:108–108Google Scholar
  48. 48.
    Medzhitov R, Janeway CA (1997) Innate immunity:impact on the adaptive immune response. Curr Opin Immunol 9:4–9PubMedGoogle Scholar
  49. 49.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983PubMedGoogle Scholar
  50. 50.
    Inohara N, Nunez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol. 3:371–382PubMedGoogle Scholar
  51. 51.
    Cotena A, Gordon S, Platt N (2004) The class A macrophage scavenger receptor attenuates CXC chemokine production and the early infiltration of neutrophils in sterile peritonitis. J Immunol 173:6427–6432PubMedGoogle Scholar
  52. 52.
    Chamaillard M, Girardin SE, Viala J, Philpott DJ (2003) Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol 5:581–592PubMedGoogle Scholar
  53. 53.
    Taylor PR, Gordon S, Martinez-Pomares L (2005) The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol 26:104–110PubMedGoogle Scholar
  54. 54.
    Martinez-Pomares L, Linehan SA, Taylor PR, Gordon S (2001) Binding properties of the mannose receptor. Immunobiology 204:527–535Google Scholar
  55. 55.
    van Vliet SJ, van Liempt E, Saeland E, Aarnoudse CA, Appelmelk B, Irimura T, Geijtenbeek TB, Blixt O, Alvarez R, van D, I, van Kooyk Y (2005) Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Int Immunol 17:661–669PubMedGoogle Scholar
  56. 56.
    Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE, Filler SG (2007) Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:e64PubMedGoogle Scholar
  57. 57.
    Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, Kimberly RP, Underhill D, Cruz PD, Jr., Ariizumi K (2006) Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 281:38854–38866PubMedGoogle Scholar
  58. 58.
    Kennedy AD, Willment JA, Dorward DW, Williams DL, Brown GD, DeLeo FR (2007) Dectin-1 promotes fungicidal activity of human neutrophils. Eur J Immunol 37:467–478PubMedGoogle Scholar
  59. 59.
    Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis E Sousa (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–517PubMedGoogle Scholar
  60. 60.
    Kawai T, Akira S (2005) Toll-like receptor downstream signaling. Arthritis Res Ther 7:12–19PubMedGoogle Scholar
  61. 61.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMedGoogle Scholar
  62. 62.
    Droemann D, Goldmann T, Branscheid D, Clark R, Dalhoff K, Zabel P, Vollmer E (2003) Toll-like receptor 2 is expressed by alveolar epithelial cells type II and macrophages in the human lung. Histochem Cell Biol 119:103–108PubMedGoogle Scholar
  63. 63.
    Basu S, Fenton MJ (2004) Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 286:L887–L892PubMedGoogle Scholar
  64. 64.
    Saegusa S, Totsuka M, Kaminogawa S, Hosoi T (2004) Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acid. FEMS Immunol Med Microbiol 41:227–235PubMedGoogle Scholar
  65. 65.
    Lauener RP, Birchler T, Adamski J, Braun-Fahrlander C, Bufe A, Herz U, von Mutius E, Nowak D, Riedler J, Waser M, Sennhauser FH (2002) Expression of CD14 and Toll-like receptor 2 in farmers' and non-farmers' children. Lancet 360:465–466PubMedGoogle Scholar
  66. 66.
    Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bufe A, Lauener RP, Schierl R, Renz H, Nowak D, von Mutius E (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347:869–877Google Scholar
  67. 67.
    Barton GM, Medzhitov R (2002) Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 14:380–383PubMedGoogle Scholar
  68. 68.
    Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2:947–950PubMedGoogle Scholar
  69. 69.
    Medzhitov R, Janeway C, Jr. (2000) The Toll receptor family and microbial recognition. Trends Microbiol 8:452–456PubMedGoogle Scholar
  70. 70.
    Kaisho T, Hoshino K, Iwabe T, Takeuchi O, Yasui T, Akira S (2002) Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. Int Immunol 14:695–700PubMedGoogle Scholar
  71. 71.
    Muraille E, De Trez C, Brait M, De Baetselier P, Leo O, Carlier Y (2003) Genetically resistant mice lacking MyD88-adapter protein display a high susceptibility to Leishmania major infection associated with a polarized Th2 response. J Immunol 170:4237–4241PubMedGoogle Scholar
  72. 72.
    Piggott DA, Eisenbarth SC, Xu L, Constant SL, Huleatt JW, Herrick CA, Bottomly K (2005) MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 115:459–467PubMedGoogle Scholar
  73. 73.
    Eisenbarth SC, Piggott DA, Bottomly K (2003) The master regulators of allergic inflammation: dendritic cells in Th2 sensitization. Curr Opin.Immunol 15:620–626PubMedGoogle Scholar
  74. 74.
    Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K (2002) Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 196:1645–1651PubMedGoogle Scholar
  75. 75.
    Dabbagh K, Dahl ME, Stepick-Biek P, Lewis DB (2002) Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J Immunol 168:4524–4530PubMedGoogle Scholar
  76. 76.
    Heijink IH, Marcel KP, van Oosterhout AJ, Postma DS, Kauffman HF, Vellenga E (2007) Der p, IL-4, and TGF-beta cooperatively induce EGFR-dependent TARC expression in airway epithelium. Am J Respir Cell Mol Biol 36:351–359PubMedGoogle Scholar
  77. 77.
    Lieberam I, Forster I (1999) The murine beta-chemokine TARC is expressed by subsets of dendritic cells and attracts primed CD4+ T cells. Eur J Immunol 29:2684–2694PubMedGoogle Scholar
  78. 78.
    Vissers JL, Hartgers FC, Lindhout E, Teunissen MB, Figdor CG, Adema GJ (2001) Quantitative analysis of chemokine expression by dendritic cell subsets in vitro and in vivo. J Leukoc Biol 69:785–793PubMedGoogle Scholar
  79. 79.
    Sekiya T, Miyamasu M, Imanishi M, Yamada H, Nakajima T, Yamaguchi M, Fujisawa T, Pawankar R, Sano Y, Ohta K, Ishii A, Morita Y, Yamamoto K, Matsushima K, Yoshie O, Hirai K (15-8-2000) Inducible expression of a Th2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells. J Immunol 165:2205–2213Google Scholar
  80. 80.
    Berin MC, Eckmann L, Broide DH, Kagnoff MF (2001) Regulated production of the T helper 2-type T-cell chemoattractant TARC by human bronchial epithelial cells in vitro and in human lung xenografts. Am J Respir Cell Mol Biol 24:382–389PubMedGoogle Scholar
  81. 81.
    Heijink IH, Vellenga E, Oostendorp J, de Monchy JG, Postma DS, Kauffman HF (2005) Exposure to TARC alters beta2-adrenergic receptor signaling in human peripheral blood T lymphocytes. Am J Physiol Lung Cell Mol Physiol 289:L53–L59PubMedGoogle Scholar
  82. 82.
    Heijink IH, van den BM, Vellenga E, de Monchy JG, Postma DS, Kauffman HF (2004) Altered beta-adrenergic regulation of T cell activity after allergen challenge in asthma. Clin Exp Allergy 34:1356–1363PubMedGoogle Scholar
  83. 83.
    Vercelli D, Baldini M, Stern D, Lohman IC, Halonen M, Martinez F (2001) CD14: a bridge between innate immunity and adaptive IgE responses. J Endotoxin Res 7:45–48PubMedGoogle Scholar
  84. 84.
    Baldini M, Lohman IC, Halonen M, Erickson RP, Holt PG, Martinez FD (1999) A Polymorphism* in the 5 flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol 20:976–983PubMedGoogle Scholar
  85. 85.
    Koppelman GH, Reijmerink NE, Colin SO, Howard TD, Whittaker PA, Meyers DA, Postma DS, Bleecker ER (2001) Association of a promoter polymorphism of the CD14 gene and atopy. Am J Respir Crit Care Med 163:965–969PubMedGoogle Scholar
  86. 86.
    Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrlander C, Nowak D, Martinez FD (2004) Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 113:482–488PubMedGoogle Scholar
  87. 87.
    Weidinger S, Klopp N, Rummler L, Wagenpfeil S, Novak N, Baurecht HJ, Groer W, Darsow U, Heinrich J, Gauger A, Schafer T, Jakob T, Behrendt H, Wichmann HE, Ring J, Illig T (2005) Association of NOD1 polymorphisms with atopic eczema and related phenotypes. J Allergy Clin Immunol 116:177–184PubMedGoogle Scholar
  88. 88.
    Hysi P, Kabesch M, Moffatt MF, Schedel M, Carr D, Zhang Y, Boardman B, von Mutius E, Weiland SK, Leupold W, Fritzsch C, Klopp N, Musk AW, James A, Nunez G, Inohara N, Cookson WO (2005) NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet 14:935–941PubMedGoogle Scholar
  89. 89.
    Koppelman GH (2006) Gene by environment interaction in asthma. Curr Allergy Asthma Rep 6:103–111PubMedGoogle Scholar
  90. 90.
    Holloway JW, Koppelman GH (2007) Identifying novel genes contributing to asthma pathogenesis. Curr Opin Allergy Clin Immunol 7:69–74PubMedGoogle Scholar
  91. 91.
    Reijmerink NE, Hylkema MN, Postma DS, Bruinenberg M, Kauffman HF, Koppelman GH (2006) Confounding effect of atopy on functional effects of the CD14/-159 promoter polymorphism. J Allergy Clin Immunol 117:219PubMedGoogle Scholar
  92. 92.
    D'Andrea MR, Derian CK, Leturcq D, Baker SM, Brunmark A, Ling P, Darrow AL, Santulli RJ, Brass LF, Andrade-Gordon P (1998) Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J Histochem Cytochem 46:157–164PubMedGoogle Scholar
  93. 93.
    Knight DA, Lim S, Scaffidi AK, Roche N, Chung KF, Stewart GA, Thompson PJ (2001) Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma. J Allergy Clin Immunol 108:797–803PubMedGoogle Scholar
  94. 94.
    Reed CE, Kita H (2004) The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol 114:997–1008PubMedGoogle Scholar
  95. 95.
    Cocks TM, Moffatt JD (2001) Protease-activated receptor-2 (PAR2) in the airways. Pulm Pharmacol Ther 14:183–191PubMedGoogle Scholar
  96. 96.
    Asokananthan N, Graham PT, Fink J, Knight DA, Bakker AJ, McWilliam AS, Thompson PJ, Stewart GA (2002) Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 168:3577–3585PubMedGoogle Scholar
  97. 97.
    Suzuki T, Moraes TJ, Vachon E, Ginzberg HH, Huang TT, Matthay MA, Hollenberg MD, Marshall J, McCulloch CA, Abreu MT, Chow CW, Downey GP (2005) Proteinase-activated receptor-1 mediates elastase-induced apoptosis of human lung epithelial cells. Am J Respir Cell Mol Biol 33:231–247PubMedGoogle Scholar
  98. 98.
    Ubl JJ, Grishina ZV, Sukhomlin TK, Welte T, Sedehizade F, Reiser G (2002) Human bronchial epithelial cells express PAR-2 with different sensitivity to thermolysin. Am J Physiol Lung Cell Mol Physiol 282:L1339–L1348PubMedGoogle Scholar
  99. 99.
    Darmoul D, Gratio V, Devaud H, Laburthe M (2004) Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J Biol Chem 279:20927–20934PubMedGoogle Scholar
  100. 100.
    Syeda F, Grosjean J, Houliston RA, Keogh RJ, Carter TD, Paleolog E, Wheeler-Jones CP (2006) Cyclooxygenase-2 induction and prostacyclin release by protease-activated receptors in endothelial cells require cooperation between mitogen-activated protein kinase and NF-kappaB pathways. J Biol Chem 281:11792–11804PubMedGoogle Scholar
  101. 101.
    Fyfe M, Bergstrom M, Aspengren S, Peterson A (2005) PAR-2 activation in intestinal epithelial cells potentiates interleukin-1beta-induced chemokine secretion via MAP kinase signaling pathways. Cytokine 31:358–367PubMedGoogle Scholar
  102. 102.
    Sun G, Stacey MA, Schmidt M, Mori L, Mattoli S (2001) Interaction of mite allergens der p3 and der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol 167:1014–1021PubMedGoogle Scholar
  103. 103.
    Vliagoftis H, Schwingshackl A, Milne CD, Duszyk M, Hollenberg MD, Wallace JL, Befus AD, Moqbel R (2000) Proteinase-activated receptor-2-mediated matrix metalloproteinase-9 release from airway epithelial cells. J Allergy Clin Immunol 106:537–545PubMedGoogle Scholar
  104. 104.
    Moffatt JD, Jeffrey KL, Cocks TM (2002) Protease-activated receptor-2 activating peptide SLIGRL inhibits bacterial lipopolysaccharide-induced recruitment of polymorphonuclear leukocytes into the airways of mice. Am J Respir Cell Mol Biol 26:680–684PubMedGoogle Scholar
  105. 105.
    Chow JM, Moffatt JD, Cocks TM (2000) Effect of protease-activated receptor (PAR)-1, -2 and -4-activating peptides, thrombin and trypsin in rat isolated airways. Br J Pharmacol 131:1584–1591PubMedGoogle Scholar
  106. 106.
    Cocks TM, Fong B, Chow JM, Anderson GP, Frauman AG, Goldie RG, Carr MJ, Hamilton JR, Moffatt JD (1999) A protective role for protease-activated receptors in the airways. Nature 398:156–160PubMedGoogle Scholar
  107. 107.
    Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P, Blobel CP (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:769–779PubMedGoogle Scholar
  108. 108.
    Ohtsu H, Dempsey PJ, Eguchi S (2006) ADAMs as mediators of EGF receptor transactiva-tion by G protein-coupled receptors. Am.J Physiol Cell Physiol. 291:C1–10PubMedGoogle Scholar
  109. 109.
    Barrios VE, Jarosinski MA, Wright CD (2003) Proteinase-activated receptor-2 mediates hyperresponsiveness in isolated guinea pig bronchi. Biochem Pharmacol 66:519–525PubMedGoogle Scholar
  110. 110.
    Chambers LS, Black JL, Poronnik P, Johnson PR (2001) Functional effects of protease-acti-vated receptor-2 stimulation on human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 281:L1369–L1378PubMedGoogle Scholar
  111. 111.
    Ebeling C, Forsythe P, Ng J, Gordon JR, Hollenberg M, Vliagoftis H (2005) Proteinase-activated receptor 2 activation in the airways enhances antigen-mediated airway inflammation and airway hyperresponsiveness through different pathways. J Allergy Clin Immunol 115:623–630PubMedGoogle Scholar
  112. 112.
    Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, Gater PR, Geppetti P, Bertrand C, Stevens ME (2002) Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 169: 5315–5321PubMedGoogle Scholar
  113. 113.
    Sun G, Stacey MA, Schmidt M, Mori L, Mattoli S (2001) Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol 167:1014–1021PubMedGoogle Scholar
  114. 114.
    Asokananthan N, Graham PT, Stewart DJ, Bakker AJ, Eidne KA, Thompson PJ, Stewart GA (2002) House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J Immunol 169:4572–4578PubMedGoogle Scholar
  115. 115.
    Tomee JFC, Wierenga ATJ, Hiemstra PS, Kauffman HF (1997) Proteases from Aspergillus fumigatus induce release of proinflammatory cytokines and cell detachment in airway epithelial cell lines. J Infect Dis 176:300–303PubMedGoogle Scholar
  116. 116.
    Wan H, Winton HL, Soeller C, Taylor GW, Gruenert DC, Thompson PJ, Cannell MB, Stewart GA, Garrod DR, Robinson C (2001) The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp.Allergy 31:279–294PubMedGoogle Scholar
  117. 117.
    Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, Robinson C (1999) Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104:123–133PubMedGoogle Scholar
  118. 118.
    Wan H, Winton HL, Soeller C, Gruenert DC, Thompson PJ, Cannell MB, Stewart GA, Garrod DR, Robinson C (2000) Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen der p 1. Clin Exp Allergy 30:685–698PubMedGoogle Scholar
  119. 119.
    Winter MC, Shasby SS, Ries DR, Shasby DM (2006) PAR2 activation interrupts E-cadherin adhesion and compromises the airway epithelial barrier: protective effect of beta-agonists. Am J Physiol Lung Cell Mol Physiol 291:L628–L635PubMedGoogle Scholar
  120. 120.
    Hassim Z, Maronese SE, Kumar RK (1998) Injury to murine airway epithelial cells by pollen enzymes. Thorax 53:368–371PubMedGoogle Scholar
  121. 121.
    Bagarozzi DA Jr, Travis J (1998) Ragweed pollen proteolytic enzymes: possible roles in allergies and asthma. Phytochemistry 47:593–598PubMedGoogle Scholar
  122. 122.
    Hewitt CR, Brown AP, Hart BJ, Pritchard DI (1995) A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antiproteases. J Exp Med 182:1537–1544PubMedGoogle Scholar
  123. 123.
    Markaryan A, Morozova I, Yu H, Kolattukudy PE (1994) Purification and characterization of an elastinolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung. Infect Immun 62:2149–2157PubMedGoogle Scholar
  124. 124.
    Borroto A, Ruiz-Paz S, de la Torre TV, Borrell-Pages M, Merlos-Suarez A, Pandiella A, Blobel CP, Baselga J, Arribas J (2003) Impaired trafficking and activation of tumor necrosis factor-alpha-converting enzyme in cell mutants defective in protein ectodomain shedding. J Biol Chem 278:25933–25939PubMedGoogle Scholar
  125. 125.
    Ring PC, Wan H, Schou C, Kroll KA, Roepstorff P, Robinson C (2000) The 18-kDa form of cat allergen Felis domesticus 1 (Fel d 1) is associated with gelatin- and fibronectin-degrading activity. Clin Exp Allergy 30:1085–1096PubMedGoogle Scholar
  126. 126.
    Gough L, Schulz O, Sewell HF, Shakib F (1999) The cysteine protease activity of the major dust mite allergen Der p 1 selectively enhances the immunoglobulin E antibody response. J Exp Med 190:1897–1902PubMedGoogle Scholar
  127. 127.
    Gough L, Campbell E, Bayley D, Van Heeke G, Shakib F (2003) Proteolytic activity of the house dust mite allergen Der p 1 enhances allergenicity in a mouse inhalation model. Clin Exp Allergy 33:1159–1163PubMedGoogle Scholar
  128. 128.
    Kheradmand F, Kiss A, Xu J, Lee SH, Kolattukudy PE, Corry DB (2002) A protease-acti-vated pathway underlying Th cell type 2 activation and allergic lung disease. J Immunol 169:5904–5911Google Scholar
  129. 129.
    Kikuchi Y, Takai T, Kuhara T, Ota M, Kato T, Hatanaka H, Ichikawa S, Tokura T, Akiba H, Mitsuishi K, Ikeda S, Okumura K, Ogawa H (2006) Crucial commitment of proteolytic activity of a purified recombinant major house dust mite allergen Der p1 to sensitization toward IgE and IgG responses. J Immunol 177:1609–1617PubMedGoogle Scholar
  130. 130.
    Cates EC, Fattouh R, Wattie J, Inman MD, Goncharova S, Coyle AJ, Gutierrez-Ramos JC, Jordana M (2004) Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism. J Immunol 173:6384–6392PubMedGoogle Scholar
  131. 131.
    Stampfli MR, Wiley RE, Neigh GS, Gajewska BU, Lei XF, Snider DP, Xing Z, Jordana M (1998) GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J Clin Invest 102:1704–1714PubMedGoogle Scholar
  132. 132.
    Ying S, O'Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, Robinson D, Zhang G, Zhao J, Lee TH, Corrigan C (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174:8183–8190PubMedGoogle Scholar
  133. 133.
    Al Shami A, Spolski R, Kelly J, Keane-Myers A, Leonard WJ (2005) A role for TSLP in the development of inflammation in an asthma model. J Exp Med 202:829–839PubMedGoogle Scholar
  134. 134.
    Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, Gilliet M, Ho S, Antonenko S, Lauerma A, Smith K, Gorman D, Zurawski S, Abrams J, Menon S, McClanahan T, Waal-Malefyt RR, Bazan F, Kastelein RA, Liu YJ (2002) Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3:673–680PubMedGoogle Scholar
  135. 135.
    Zhou B, Comeau MR, De Smedt T, Liggitt HD, Dahl ME, Lewis DB, Gyarmati D, Aye T, Campbell DJ, Ziegler SF (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6:1047–1053PubMedGoogle Scholar
  136. 136.
    Hart LA, Krishnan VL, Adcock IM, Barnes PJ, Chung KF (1998) Activation and localization of transcription factor, nuclear factor- kappaB, in asthma. Am J Respir Crit Care Med 158:1585–1592PubMedGoogle Scholar
  137. 137.
    Stacey MA, Sun G, Vassalli G, Marini M, Bellini A, Mattoli S (1997) The allergen Der p 1 induces NF-κB activation through interference with IκBα function in asthma bronchial epithelial cells. Biochem Biophys Res Commun 236:522–526PubMedGoogle Scholar
  138. 138.
    Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR (2004) E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23:1739–1748PubMedGoogle Scholar
  139. 139.
    Ara T, Deyama Y, Yoshimura Y, Higashino F, Shindoh M, Matsumoto A, Fukuda H (2000) Membrane type 1-matrix metalloproteinase expression is regulated by E-cadherin through the suppression of mitogen-activated protein kinase cascade. Cancer Lett 157:115–121PubMedGoogle Scholar
  140. 140.
    Heijink IH, Kies PM, Kauffman HF, Postma DS, van Oosterhout AJ, Vellenga E (2007) Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent Th2 cell-promoting activity. J Immunol 178:7678–7685PubMedGoogle Scholar
  141. 141.
    Hertz CJ, Wu Q, Porter EM, Zhang YJ, Weismuller KH, Godowski PJ, Ganz T, Randell SH, Modlin RL (15-12-2003) Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J Immunol 171:6820–6826Google Scholar
  142. 142.
    Duits LA, Ravensbergen B, Rademaker M, Hiemstra PS, Nibbering PH (2002) Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106:517–525PubMedGoogle Scholar
  143. 143.
    Hiemstra PS, van Wetering S, Stolk J (1999) Defensins; where and how do they work against micro-organisms on human airways? Eur Respir J 14:731–731Google Scholar
  144. 144.
    Tomee JFC, Koëter GH, Hiemstra PS, Kauffman HF (1998) Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option? Thorax 53:114–116PubMedGoogle Scholar
  145. 145.
    Paris S, Boisvieux UE, Crestani B, Houcine O, Taramelli D, Lombardi L, Latge JP (1997) Internalization of Aspergillus fumigatus conidia by epithelial and endothelial cells. Infect Immun 65:1510–1514PubMedGoogle Scholar
  146. 146.
    DeHart DJ, Agwu DE, Julian NC, Washburn RG (1997) Binding and germination of Aspergillus fumigatus conidia on cultured A549 pneumocytes. J Infect Dis 175:146–150PubMedGoogle Scholar
  147. 147.
    Yang Z, Jaeckisch SM, Mitchell CG (2000) Enhanced binding of Aspergillus fumigatus spores to A549 epithelial cells and extracellular matrix proteins by a component from the spore surface and inhibition by rat lung lavage fluid. Thorax 55:579–584PubMedGoogle Scholar
  148. 148.
    Luther K, Torosantucci A, Brakhage AA, Heesemann J, Ebel F (2007) Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cell Microbiol 9:368–381PubMedGoogle Scholar
  149. 149.
    Taylor PR, Tsoni S V, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8:31–38PubMedGoogle Scholar
  150. 150.
    Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP (2004) Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol 31:358–364PubMedGoogle Scholar
  151. 151.
    Guillot L, Medjane S, Le Barillec K, Balloy V, Danel C, Chignard M, Si-Tahar M (2004) Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmen-talization of TLR4. J Biol Chem 279:2712–2718PubMedGoogle Scholar
  152. 152.
    Armstrong L, Medford AR, Uppington KM, Robertson J, Witherden IR, Tetley TD, Millar AB (2004) Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. Am J Respir Cell Mol Biol 31:241–245PubMedGoogle Scholar
  153. 153.
    Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M (2005) Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280:5571–5580PubMedGoogle Scholar
  154. 154.
    Zhang Z, Liu R, Noordhoek JA, Kauffman HF (2005) Interaction of airway epithelial cells (A549) with spores and mycelium of Aspergillus fumigatus. J Infect 51:375–382PubMedGoogle Scholar
  155. 155.
    Kauffman HF, Heijink IH (2006) Airway remodelling in fungal allergy. In: Viswanath P. Kurup (eds). Mold allergy, biology and pathogenesis. Kerala, pp 237–256Google Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Irene Heijink
    • 1
  • Henk F. Kauffman
    • 1
  1. 1.Clinic for Internal Medicine, Department of AllergologyUniversity Medical Centre GroningenGroningen

Personalised recommendations