Advertisement

Differentiation and identification of Alicyclobacillus species

  • Keiichi Goto

Abstract

Over the past few years, various methods have been developed for the differentiation and identification of Alicyclobacillus. These methods are described in sections 5–2 to 5–13. The details of each method are provided however the methods differ slightly from each other in sensitivity and performance. Therefore it is very important to have a clear idea of the desired objective before selecting the analytical method to be applied. For example, the peroxidase method is effective for the detection of guaiacol and the differentiation of guaiacol producing species (5–2). The 16S rRNA gene (16S rDNA) sequence comparison method is effective for species identification (5–4), and ribotyping is the preferred method for identification at the strain level (5–7).

Keywords

Fruit Juice Vanillic Acid Peroxidase Method Emended Description Type Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Niwa M (2003) A. acidoterrestris Rapid Detection Kit. Fruit Processing 13:328–331.Google Scholar
  2. 2.
    Niwa M (2004) Guaiakoru kensyutsu (Peruokishidaze hou) ni yoru sansei inryou yuugai kin no kanri. Japan Food Science 43:23–28 (in Japanese).Google Scholar
  3. 3.
    Goto K, Matsubara H, Mochida K, Matsumura T, Hara Y, Niwa M, Yamasato K (2002) Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω-cycloheptane fatty acids, isolated from herbal tea. Int J Syst Evol Microbiol 52:109–113.PubMedGoogle Scholar
  4. 4.
    Goto K, Tanimoto Y, Tamura T, Mochida K, Arai D, Asahara M, Suzuki M, Tanaka H, Inagaki K (2002) Identification of thermoacidophilic bacteria and a new Alicyclobacillus genomic species isolated from acidic environments in Japan. Extremophiles 6:333–340.PubMedCrossRefGoogle Scholar
  5. 5.
    Goto K, Mochida K, Asahara M, Suzuki M, Yokota A (2002) Application of the hypervariable region of the 16S rDNA sequence as an index for the rapid identification of species in the genus Alicyclobacillus. J Gen Appl Microbiol 48:243–250.PubMedCrossRefGoogle Scholar
  6. 6.
    Goto K, Omura T, Hara Y, Sadaie Y (2000) Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 46:1–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Goto K, Mochida K, Asahara M, Suzuki M, Kasai H, Yokota A (2003) Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess ω-alicyclic fatty acids, and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 53:1537–1544.PubMedCrossRefGoogle Scholar
  8. 8.
    Goto K, Fujita R, Kato Y, Asahara M, Yokota A (2004) Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 (=NRRL NRS-887)as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov. Int J Syst Evol Microbiol 54:419–427.PubMedCrossRefGoogle Scholar
  9. 9.
    Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535.PubMedCrossRefGoogle Scholar
  10. 10.
    Yamazaki K, Okubo T, Inoue N, Shinano H (1997) Randomly Amplified Polymorphic DNA (RAPD) for rapid identification of spoilage bacterium Alicyclobacillus acidoterrestris. Biosci Biotech Biochem 61:1016–1018.CrossRefGoogle Scholar
  11. 11.
    Goto K, Kato Y, Asahara M, Yokota A (2002) Evaluation of the hypervariable region in the 16S rDNA sequence as an index for rapid species identification in the genus Paenibacillus. J Gen Appl Microbiol 48:281–285.PubMedCrossRefGoogle Scholar
  12. 12.
    Yamazaki K, Tezuka H, Shinano H (1996) Isolation and identification of Alicyclobacillus acidoterrestris from acid beverages. Biosci Biotech Biochem 60:543–545.CrossRefGoogle Scholar
  13. 13.
    Goto K, Mochida K, Kato Y, Asahara M, Ozawa C, Kasai H, Yokota A (2006) Diversity of Alicyclobacillus isolated from fruit juices and their raw materials, and emended description of Alicyclobacillus acidocaldarius. Microbiol Cult Coll 22:1–14.Google Scholar
  14. 14.
    Shimabukuro C, Inoue T, Nakakita Y, Kaneda H, Shiotani H, Minekawa H, Soejima T (2003) LAMP hou wo mochiita tainetusei kousanseikin no hantei houhou ni tuite. Nihon-Seiryoinryo-Kenkyukai, Dai-13-kai Kenkyu Happyokai (in Japanese).Google Scholar
  15. 15.
    Muramatu T, Niwa M (1992) Inryo seizou ni okeru kanri shihyoukin no doutei to shibousan bunseki ni yoru kanben doutei no kokoromi. J Antibact Antifung Agents 20:637–642 (in Japanese).Google Scholar
  16. 16.
    Deinhard G, Saar J, Krischke W, Poralla K (1987) Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing ω-cycloheptane fatty acids. Syst Appl Microbiol 10:68–73.Google Scholar
  17. 17.
    Suzuki K, Saito K, Kawaguchi A, Okuda S, Komagata K (1981) Occurrence of ω-cyclohexyl fatty acids in Curtobacterium pusillum strains. J Gen Appl Microbiol 27:261–266.Google Scholar
  18. 18.
    Kusano K, Yamada H, Niwa M, Yamasato K (1997) Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant ω-cyclohexyl fatty acid-containing propionibacterium isolated from spoiled orange juice. Int J Syst Bacteriol 47:825–831.PubMedGoogle Scholar
  19. 19.
    Dufresne S, Bousquet J, Boissinot M, Guay R (1996) Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positive, spore-forming bacterium. Int J Syst Bacteriol 46:1056–1064.PubMedCrossRefGoogle Scholar
  20. 20.
    Thelen K, Beimfohr C, Snaidr J (2003) Specific rapid detection of Alicyclobacillus by fluorescently-labeled gene probes in fruit juices. Fruit Processing 6:416–418.Google Scholar
  21. 21.
    Kato H, Kawai Y, Tezuka H, Matsunaga M (1993) Sansei inryo no henpai jiko ni kansuru chousa (2) Kounetsusei yugahousaikin niyoru ishu hassei (fureba henka) ni tuite. Kanzumejihou 72:28 (in Japanese).Google Scholar
  22. 22.
    Jensen N, Whitfield FB (2003) Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice. Lett Appl Microbiol 36:9–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Ono A, Suzuki M, Goto K, Nanjo F (2004) Inshokubutu no ishu genin tonaru guaiakoru no jinsoku na kenshutu hou nituite. Nihon Nougei Kagaku Kai Taikai 2004 nendo taikai kouen youshishu 222 (in Japanese).Google Scholar
  24. 24.
    Kitamura K, Taniyama T, Aoyama F, Mitani M, Matsumoto K, Miyashita M, Ogawa H (2001) Teishoku hou ni yoru ekitai baichi wo mochiita Alicyclobacillus zoku saikin no jinsoku kenshutu houhou. Nihon Nougei Kagaku Kai Taikai 1996 nendo taikai kouen youshishu 267 (in Japanese).Google Scholar
  25. 25.
    Baumgart J (1997) Alicyclobacillus acidoterrestris: vorkommen, bedeutung und nachweis in gertranken und getrankegrundstoffen. Flüssiges Obst 64:178–180 (in Germany).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Keiichi Goto
    • 1
  1. 1.Food Research LaboratoriesMitsui Norin Co.,Ltd.Japan

Personalised recommendations