Skip to main content

Molecular Systems and Their Applications to Energy Conversion

  • Chapter
Book cover Functionality of Molecular Systems
  • 123 Accesses

Abstract

A number of molecular energy conversion systems can be seen in biological organisms, e.g., photosynthesis, vision, muscular movements, and photophobic/ phototactic responses. A particular form of energy, e.g., photonic energy, electric energy, mechanical energy, or chemical energy, is received as a stimulus from the external environment by sensor molecules and then converted to another form of energy. The initial steps in these energy conversions are driven by the transfer of an electron, excitation energy, or a soliton through a molecular channel in which functional molecules are arranged in a specific spatial configuration within polypeptide networks. These processes are characterized by high efficiencies and ultrafast reaction rates. To interprete the mechanisms of such sequential and cooperative reactions, it may be necessary to develop a new theoretical description of the intermolecular interactions which spread the functional molecules along the reaction channel. This description is being sought by detailed analyses of the biological systems, and also by research into artificial molecular systems based on synthesized supramolecules or planned solid complex superstructures. This chapter first considers sequential reactions in biological molecular systems, and then those in artificial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleming GR, Van Grondelle R (1994) The primary steps of photosynthesis. Phys Today 47: 48–55

    CAS  Google Scholar 

  2. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosythetic reaction centre of Rhodopseudomonas viridis at IN resolution. Nature 318: 618–624

    CAS  Google Scholar 

  3. Kuhn H (1986) Electron transfer in organized membranes. In: Proceedings of the Robert A. Welch Foundation Conference on Chemical Research XXX. Advances in Electrochemistry. Houston, pp 339–368

    Google Scholar 

  4. Holzapfel W, Finkele U, Kaiser W, Oesterheldt D, Scheer H, Stilz HU, Zinth W (1990) Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 5168–5172

    CAS  Google Scholar 

  5. Kirmaier C, Holten D (1991) An assessment of the mechanism of initial electron transfer in bacterial reaction centers. Biochemistry 30: 609–613

    CAS  Google Scholar 

  6. Middendorf T, Mazzola L, Gaul D, Schenck C, Boxer S (1991) Photochemical hole-burning spectroscopy of a photosynthetic reaction center mutant with altered charge separation kinetics: properties and decay of the initially excited state. J Phys Chem 95: 10142–10151

    CAS  Google Scholar 

  7. Chan CK, DiMagno TJ, Chen LXQ, Norris JR, Fleming GR (1991) Mechanism of the initial charge separation in bacterial photosynthetic reaction centers. Proc Natl Acad Sci USA 88: 11202–11206

    CAS  Google Scholar 

  8. Glazer AN (1984) Phycobilisome, a macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768: 29–51

    CAS  Google Scholar 

  9. Huber R (1989) A structural basis of light energy and electron transfer in biology. EMBO J 8: 2125–2147

    CAS  Google Scholar 

  10. Porter G, Tredwell CJ, Searle GFW, Barber J (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Biochim Biophys Acta 501: 232–245

    CAS  Google Scholar 

  11. Yamazaki I, Tamai N, Yamazaki T, Murakami A, Mimuro M, Fujita Y (1988) Sequential excitation energy transport in stacking multilayers: comparative study between photosynthetic antenna and Langmuir—Blodgett multilayers. J Phys Chem 92: 50355044

    CAS  Google Scholar 

  12. Mimuro M, Yamazaki I, Tamai N, Katoh T (1989) Excitation energy transfer in phycobilisomes at —196°C isolated from the cyanibacterium Anabaena variabilis (M-3): evidence for the plural transfer pathways to the terminal emitters. Biochim Biophys Acta 973: 153–162

    CAS  Google Scholar 

  13. Yamazaki I, Ohta N, Yoshinari S, Yamazaki T (1994) Site-selected excitation energy transport in Langmuir—Blodgett multilayer films. In: Masuhara H, DeSchryver FC, Kitamura N, Tamai N (eds) Microchemistry: spectroscopy and chemistry in small domains. North-Holland, Amsterdam, pp 431–440

    Google Scholar 

  14. Blankenship RE, Brune DC, Wittmershaus BP (1988) Chlorosome antennas in green photosynthetic bacteria. In: Stevens SE, Bryant D (eds) Light—energy transduction in photosynthesis: higher plants and bacterial models. American Society of Plant Physiologists

    Google Scholar 

  15. Sprague SG, Staehelin LA, DiBartolomeis MJ, Fuller RC (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1021–1031

    CAS  Google Scholar 

  16. Brune DC, Nozawa T, Blankenship RE (1987) Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry 26: 8644–8652

    CAS  Google Scholar 

  17. Mimuro M, Nozawa T, Tamai N, Shimada K, Yamazaki I, Lin S, Knox RS, Wittmershaus BP, Brune DC, Blankenship RE (1988) Excitation energy flow in chlorosome antennas of green photosynthetic bacteria. J Phys Chem 93: 7503–7509

    Google Scholar 

  18. Pierson BK, Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-f1. Proc Natl Acad Sci USA 80: 80–84

    CAS  Google Scholar 

  19. Karrasch S, Bullough P, Ghosh R (1995) EMBO J 14: 631–638

    CAS  Google Scholar 

  20. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    CAS  Google Scholar 

  21. Külbrandt W (1995) Many wheels make light work. Nature 374: 497–498

    Google Scholar 

  22. Van Mourik F, Verwijst RR, Mulder JM, Van Grondelle R (1992) Excitation transfer dynamics and spectroscopic properties of the light-harvesting BChl a complex of Prostecochloris aestuarii. J Lumin 53: 499–502

    Google Scholar 

  23. Du M, Xie X, Jia Y, Mets L, Fleming GR (1993) Direct observation of ultrafast energy transfer in PSI core antenna. Chem Phys Lett 201: 535–542

    CAS  Google Scholar 

  24. Song PS (1984) Phytochrome. In: Wilkins M (ed) Advanced Plant Physiology. Pitman, London, pp 354–379

    Google Scholar 

  25. Furuya M (1989) Molecular properties and biogenesis of phytochrome I and II. Adv Biophys 25: 133–167

    CAS  Google Scholar 

  26. Hershey HP, Barker RF, Idler KB, Lissemore JL, Quail PH (1985) Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequences for two gene products expressed in etiolated Avena. Nucleic Acids Res 13: 85438560

    CAS  Google Scholar 

  27. Romanowski M, Song PS (1992) Structural domains of phytochrome deduced from homologies in amino-acid sequences. J Protein Chem 11: 139–155

    CAS  Google Scholar 

  28. Sommer D, Song PS (1990) Chromophore topography and secondary structure of 124kilodalton Avena phytochrome probed by Zn’-induced chromophore modification. Biochemistry 29: 1943–1948

    CAS  Google Scholar 

  29. Rudiger W, Thummler F, Cmiel E, Schneider S (1983) Chromophore structure of the physiologically active form ( Pfr) of phytochrome. Proc Natl Acad Sci USA 80: 62446248

    Google Scholar 

  30. Savakhin S, Wells T, Song PS, Struve WS (1993) Ultrafast pump—probe spectroscopy of native etiolated oat phytochrome. Biochemistry 32: 7512–7518

    Google Scholar 

  31. Zhang CF, Farrens DL, Bjorling SC, Song PS, Kliger DS (1992) Time-resolved absorption studies of native etiolated oat phytochrome. J Am Chem Soc 114: 4569–4580

    CAS  Google Scholar 

  32. Song PS, Hader DP, Poff KL (1980) Set-up photophobic response in the ciliated Stentor coeruleus. Arch Micorobiol 126: 181–186

    CAS  Google Scholar 

  33. Kim IH, Rhee JS, Huh JW, Florell S, Faure B, Lee KW, Kahsai T, Song PS, Tamai N, Yamazaki T, Yamazaki I (1990) Structure and function of the photoreceptor stentorins in Stentor coeruleus. I. Partial characterization of the photoreceptor organelle and stentorins. Biochem Biophys Acta 1040: 43–57

    Google Scholar 

  34. Tao N, Orlando M, Hyon JS, Gross M, Song PS (1993) A new photoreceptor molecule from Stentor coeruleus. J Am Chem Soc 115: 2526–2528

    CAS  Google Scholar 

  35. Fabczak H, Park PB, Fabczak S, Song PS (1993) Photosensory transduction in ciliates. II. Possible role of G-protein and cGMP in Stentor coeruleus. Photochem Photobiol 57: 702–706

    CAS  Google Scholar 

  36. Song PS, Kim IH, Florell S, Tamai N, Yamazaki T, Yamazaki I (1990) Structure and function of the photoreceptor stentorins in Stentor coeruleus. II. Primary photoprocess and picosecond time-resolved fluorescence. Biochim Biophys Acta 1040: 58–65

    Google Scholar 

  37. Savikhin S, Tao N, Song PS, Struve W (1993) Ultrafast pump—probe spectroscopy of the photoreceptor stentorins from the ciliate Stentor coeruleus. J Phys Chem 97: 1237912386

    Google Scholar 

  38. Yamazaki I, Tamai N, Yamazaki T (1990) Electronic excitation transfer in organized molecular assemblies. J Phys Chem 94: 516–525

    CAS  Google Scholar 

  39. Osuka A, Maruyama K, Mataga N, Asahi T, Yamazaki I, Tamai N (1990) Geometry dependence of intramolecular photoinduced electron transfer in synthetic zinc—ferric hybrid diporphyrins. J Am Chem Soc 112: 4958–4959

    CAS  Google Scholar 

  40. Osuka A, Nakajima S, Maruyama K, Mataga N, Asahi T, Yamazaki I, Nishimura Y, Ohno T, Nozaki K (1993) 1,2-phenylene-bridge diporphyrin linked with porphyrin monomer and pyromellitimide as a model for a photosynthetic reaction center: synthesis and photoinduced charge separation. J Am Chem Soc 115: 4577–4589

    Google Scholar 

  41. Osuka A, Yamada H, Maruyama K, Mataga N, Asahi T, Ohkouchi M, Okada T, Yamazaki I, Nishimura Y (1993) Synthesis and photoexcited-state dynamics of aromatic group-bridged carotenoid—porphyrin dyads and carotenoid—porphyrinpyromellitimide triads. J Am Chem Soc 115: 9439–9452

    CAS  Google Scholar 

  42. Segawa H, Nakayama N, Shimidzu T (1992) Electrochemical synthesis of one-dimensional donor—acceptor polymers containing oligothiophenes and phosphorus porphyrins. J Chem Soc, Chem Commun 784–786

    Google Scholar 

  43. Yonemura H, Nakamura H, Matsuo T (1989) External magnetic field effects on photoinduced electron transfer reactions in phenothiazine—viologen-linked systems complexed with cyclodextrins. Chem Phys Lett 155: 157–161

    CAS  Google Scholar 

  44. Kuhn H, Möbius D, Bücher H (1972) Spectroscopy of monolayer assemblies. In: Weissberger A, Rossiter BW (eds) Techniques of chemistry, vol 1, part 3B. Wiley, New York

    Google Scholar 

  45. Ahuja R, Möbius D (1989) Photoinduced electron transfer in Langmuir—Blodgett films. Thin Solid Films 179: 457–462

    CAS  Google Scholar 

  46. Mooney WF, Whitten DG (1986) Energy-and electron-transfer quenching of surfactant trans-stilbenes in supported multilayers: the use of hydrophobic substrate chromophores to determine short-range distance dependence in assemblies. J Am Chem Soc 108: 5712–5719

    CAS  Google Scholar 

  47. Polymeropoulos EE, Möbius D, Kuhn H (1980) Monolayer assemblies with functional units of sensitizing and conducting molecular components: photovoltage, dark conduction and photoconduction in systems with aluminium and barium electrodes. Thin Solid Films 68: 173–190

    CAS  Google Scholar 

  48. Tachibana H, Goto A, Nakamura T, Matsumoto M, Manda E, Niino H, Yabe A, Kawabata T (1989) Photoresponsive conductivity in Langmuir—Blodgett films. Thin Solid Films 179: 207–213

    CAS  Google Scholar 

  49. Yamazaki I, Ohta N (1995) Photochemistry in LB films and its application to molecular switching devices. Pure Appl Chem 67: 209–216

    CAS  Google Scholar 

  50. Förster Th (1960) Excitation transfer. In: Burton M, Kirby-Smith JS, Magee JL (eds) Comparative effects of radiation. Wiley, New York, pp 300–341

    Google Scholar 

  51. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37–38

    CAS  Google Scholar 

  52. Gerischer H (1979) Solar photoelectrolysis with semiconductor electrodes. In: Seraphin BO (ed) Solar energy conversion; solid-state physics aspects. Springer, Berlin, Chap. 4

    Google Scholar 

  53. Nozik A (1978) Photoelectrochemistry: applications to solar energy conversion. In: Rabinowitch BS, Schurr JM, Strauss HL (eds) Annual review of physical chemistry, vol 29. Annual Reviews, Palo Alto, pp 189–222

    Google Scholar 

  54. Wrighton MS (1979) Photoelectrochemical conversion of optical energy to electricity and fuels. Acc Chem Res 12: 303–310

    CAS  Google Scholar 

  55. Heller A (1981) Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc Chem Res 14: 154–162

    CAS  Google Scholar 

  56. Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum, New York

    Google Scholar 

  57. Watanabe T, Fujishima A, Honda K (1976) Photoelectrochemical reactions at SrTiO3 single crystal electrode. Bull Chem Soc Jpn 49: 355–358

    CAS  Google Scholar 

  58. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, Chap. 14

    Google Scholar 

  59. Kolodinski S, Werner JH, Wittchen T, Queisser HJ (1993) Quantum efficiencies ex-ceeding unity due to impact ionization in silicon solar cells. Appl Phys Lett 63: 2405–2407

    CAS  Google Scholar 

  60. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28: 141–145

    CAS  Google Scholar 

  61. Wang A, Zhao J, Green MA (1990) 24% efficient silicon solar cells. Appl Phys Lett 57: 602–604

    Google Scholar 

  62. Hodes G, Manassen J, Cahen D (1985) Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature 261: 403–404

    Google Scholar 

  63. Inoue T, Watanabe T, Fujishima A, Honda K, Kohayakawa K (1979) Suppression of surface dissolution of CdS photoanode by reducing agents. J Electrochem Soc 124: 719–722

    Google Scholar 

  64. Lewis N (1991) An analysis of charge transfer rate constants for semiconductor/liquid interfaces. In: Strauss HL, Babcock GT, Leone SR (eds) Annual review of physical chemistry, vol 42. Annual Reviews, Palo Alto, pp 543–580

    Google Scholar 

  65. Gerischer H, Gobrecht (1976) On the power characteristics of electrochemical solar cells. Z Phys Chem 80: 327–330

    CAS  Google Scholar 

  66. Chang KC, Heller A, Schwartz B, Menezes S, Miller B (1977) Stable semiconductor liquid junction cell with 9 percent solar-to-electrical conversion efficiency. Science 196: 1097–1099

    CAS  Google Scholar 

  67. Heller A, Chang KC, Miller B (1977) Spectral response and efficiency relations in semiconductor liquid junction solar cells. J Electrochem Soc 124: 697–700

    CAS  Google Scholar 

  68. Heller A, Schwartz GP, Vadimsky RG, Menezes S, Miller B (1978) Output stability of n-CdSe/Na2S-S-NaOH/C solar cells. J Electrochem Soc 125: 1156–1160

    CAS  Google Scholar 

  69. Parkinson BA, Heller A, Miller B (1978) Enhanced photoelectrochemical solar-energy conversion by gallium arsenide surface modification. Appl Phys Lett 33: 521–533

    CAS  Google Scholar 

  70. Johnston WD Jr, Leamy HJ, Parkinson BA, Heller A, Miller B (1980) Effect of ruthenium ions on grain boundaries in gallium arsenide thin film photovoltaic devices. J Electrochem Soc 127: 90–95

    CAS  Google Scholar 

  71. Heller A, Lewerenz HJ, Miller B (1980) Combined ruthenium lead surface treatment of gallium arsenide photoanodes. Ber Bunsenges Phys Chem 84: 592595

    Google Scholar 

  72. Lewerenz HJ, Heller A, DiSalvo FJ (1980) Relationship between surface morphology and solar conversion of WSe2 photoanodes. J Am Chem Soc 102: 1877–1880

    CAS  Google Scholar 

  73. Menezes S, Lewerenz HJ, Bachmann KJ (1983) Efficient and stable solar cell by interfacial film formation. Nature 305: 615–616

    CAS  Google Scholar 

  74. Cahen D, Chen YW (1984) n-CuInSe2 based photoelectrochemical cells: improved, stable performance in aqueous polyiodide through rational surface and solution modification. Appl Phys Lett 45: 746–748

    Google Scholar 

  75. Licht S, Tenne R, Dagan G, Hodes G, Manassen J, Cahen D, Triboulet R, Rioux J, Levy-Clement C (1985) High efficiency n-Cd(Se,Te)/S- photoelectrochemical cell resulting from solution chemistry control. Appl Phys Lett 46: 608–610

    CAS  Google Scholar 

  76. Tenne R, Wold A (1985) Passivation of recombination centers in n-WSe2 yields high efficiency (>14%) photoelectrochemical cell. Appl Phys Lett 47: 707–709

    CAS  Google Scholar 

  77. Tufts BJ, Abrahams IL, Santangelo PG, Ryba GN, Casagrande LG, Lewis NS (1987) Chemical modification of n-GaAs electrodes with Os3+ gives a 15% efficient solar cell. Nature 326: 861–863

    CAS  Google Scholar 

  78. Licht S, Peramunage D (1990) Efficient photoelectrochemical solar cells from electrolyte modification. Nature 345: 330–333

    CAS  Google Scholar 

  79. Heller A, Miller B, Lewerenz HJ, Bachmann KJ (1980) An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with p-InP/VC13- VC12- HCl/C. J Am Chem Soc 102: 6555–6556

    CAS  Google Scholar 

  80. Heller A, Miller B, Thiel FA (1981) 11.5% solar conversion efficiency in the photocathodically protected p-InP/V3+-V2+-HCI/C semiconductor liquid junction cell. Appl Phys Lett 38: 282–284

    Google Scholar 

  81. Gronet CM, Lewis NS, Cogan G, Gibbons J (1983) n-Type silicon photoelectrochemistry in methanol: design of a 10.1% efficient semiconductor/liquid junction solar cell. Proc Natl Acad Sci USA 80: 1152–1156

    Google Scholar 

  82. Gibbons JW, Cogan GW, Gronet CM, Lewis NS (1984) A 14% efficient nonaqueous semiconductor/liquid junction solar cell. Appl Phys Lett 45: 1095–1097

    CAS  Google Scholar 

  83. Heben MJ, Kumar A, Zheng C, Lewis NS (1989) Efficient photovoltaic devices for InP semiconductor/liquid junctions. Nature 340: 621–623

    CAS  Google Scholar 

  84. Tufts BJ, Casagrande LG, Lewis NS, Grunthaner FJ (1990) Erratum: correlations between the interfacial chemistry and current-voltage behavior of n-GaAs/liquid junctions [Appl Phys Lett 57, 1242 (1990)]. Appl Phys Lett 57: 2262–2264

    CAS  Google Scholar 

  85. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,2’bieyridyl-4,4’dicarboxylate)ruthenium(II) charge transfer sensitizers (X = Cl-, Br, I, CN- and SCN-) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115: 63826390

    Google Scholar 

  86. Narayanan S, Wenham SR, Green MA (1990) 17.8-percent efficiency polycrystalline silicon solar cells. IEEE Trans Electron Dev 37: 382–384

    Google Scholar 

  87. Gabor AM, Tuttle JR, Albin DS, Contreras MA, Noufi R, Hermann AM (1994) High-efficiency CuInxGa1_XSe2 solar cells made from (Inx,Ga,_x)2Se3 precursor films. Appl Phys Lett 65: 198–200

    CAS  Google Scholar 

  88. Bertness KA, Kurtz SR, Friedman DJ, Kibbler AE, Kramer C, Olson JM (1994) 29.5%-efficient GaInP/GaAs tandem solar cells. Appl Phys Lett 65: 989–991

    Google Scholar 

  89. Zhao J, Wang A, Altermatt P, Green MA (1995) Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl Phys Lett 66: 3636–3638

    CAS  Google Scholar 

  90. Henry CH (1980) Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys 51: 4494–4500

    CAS  Google Scholar 

  91. Schefold J, Vetter M (1994) Solar energy conversion at the p-InP/vanadium3+i2+ semiconductor/electrolyte contact. J Electrochem Soc 141: 2040–2048

    CAS  Google Scholar 

  92. Parkinson B (1984) On the efficiency and stability of photoelectrochemical devices. Acc Chem Res 17: 431–437

    CAS  Google Scholar 

  93. Lewis NS (1990) Mechanistic studies of light-induced charge separation at semiconductor/liquid interfaces. Acc Chem Res 23: 176–183

    CAS  Google Scholar 

  94. Swain GM (1994) The use of CVD diamond thin films in electrochemical systems. Adv Mater 6: 388–392

    CAS  Google Scholar 

  95. Reuben C, Galun E, Cohen H, Tenne R, Kalish R, Muraki Y, Hashimoto K, Fujishima A, Butler JM, Levy-Clement C (1995) Efficient reduction of nitrite and nitrate to ammonia using thin-film B-doped diamoned electrodes. J Electroanal Chem 396: 233239

    Google Scholar 

  96. Tributsch H (1992) Electronic structure, coordination photoelectrochemical pathways and quantum energy conversion by layered transition metal dichalcogenides. In: Aruchamy A (ed) Photoelectrochemistry and photovoltaics of layered semiconductors. Kluwer, Dordrecht

    Google Scholar 

  97. Levy-Clement C, Tenne R (1992) Modification of surface properties of layered compounds by chemical and (photo) electrochemical procedures. In: Aruchamy A (ed) Photoelectrochemistry and photovoltaics of layered semiconductors. Kluwer, Dordrecht

    Google Scholar 

  98. Ueno K, Shimada T, Saiki K, Koma A (1990) Heteroepitaxial growth of layered transition metal dichalcogenides on sulfur-terminated GaAs (111) surfaces. Appl Phys Lett 56: 327–329

    CAS  Google Scholar 

  99. Mayer T, Lehmann J, Pettenkofer C, Jaegermann W (1992) Coadsorption of Na and Br2 on WS2 (0001). Creating a surface redox couple? Chem Phys Lett 198: 621

    CAS  Google Scholar 

  100. Jaegermann W (1996) The semiconductor/electrolyte interface: a surface science aproach. In: White BE et al. (eds) Modern aspects of electrochemistry, vol. 30. Plenum, New York, Chap 1

    Google Scholar 

  101. Kudo A, Sayama K, Tanaka A, Asakura K, Domen K, Maruya K, Onishi T (1989) Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and 02: structure and reaction mechanism. J Catal 120: 337–352

    CAS  Google Scholar 

  102. Sayama K, Tanaka A, Domen K, Maruya K, Onishi T (1991) Photocatalytic decomposition of water over platinum-intercalated K4Nb6O17. J Phys Chem 95: 13451348

    Google Scholar 

  103. Kim YI, Atherton SJ, Brigham ES, Mallouk TE (1993) Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J Phys Chem 97: 11802–11810

    CAS  Google Scholar 

  104. Grätzel M, Kalyanasundaram K, Kiwi J (1982) Visible light induced cleavage of water into hydrogen and oxygen in colloidal and microheterogeneous systems. In: Clarke MJ et al. (eds) Structure and bonding 49: solar energy materials. Springer, Berlin, pp 37–125

    Google Scholar 

  105. Dyer CK (1990) A novel thin-film electrochemical device for energy conversion. Nature 343: 547–548

    CAS  Google Scholar 

  106. Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95: 49–68

    CAS  Google Scholar 

  107. Hagfeldt A, Vlachopoulos N, Grätzel M (1994) Fast electrochromic switching with nanocrystalline oxide semiconductor films. J Electrochem Soc 141: L82 - L84

    CAS  Google Scholar 

  108. Huang SY, Kavan L, Exnar I, Grätzel M (1995) Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J Electrochem Soc 142: L142 - L144

    CAS  Google Scholar 

  109. Halmann MM (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275: 115–116

    CAS  Google Scholar 

  110. Halmann MM (1993) Chemical fixation of carbon dioxide—methods for recycling CO2 into useful products. CRC Press, Boca Raton, Chaps. 1 and 8

    Google Scholar 

  111. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrochemical reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277: 637638

    Google Scholar 

  112. Lewis NS, Shreve GA (1993) Photochemical and photoelectrochemical reduction of carbon dioxide. In: Sullivan BP et al. (eds) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, Amsterdam, Chap. 8

    Google Scholar 

  113. Randin JP (1976) Carbon. In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements, vol VII. Marcel Dekker, New York, Chap. VII - 1

    Google Scholar 

  114. Saeki T, Hashimoto K, Fujishima A, Kimura N, Ornata K (1995) Electrochemical reduction of CO2 with high current density in a CO2-methanol medium. J Phys Chem 99: 8440–8446

    CAS  Google Scholar 

  115. O11is DF, Al-Ekabi, H (eds) (1993) Photocatalytic purification and treatment of water and air. Elsevier, Amsterdam

    Google Scholar 

  116. Fox MA, Duly MT (1993) Heterogeneous photocatalysis. Chem Rev 93: 341–357

    CAS  Google Scholar 

  117. Hoffman MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95: 69–96

    Google Scholar 

  118. Heller A (1995). Chemistry and applications of photocatalytic oxidation of thin or- ganic films. Acc Chem Res 28: 503–508

    CAS  Google Scholar 

  119. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results. Chem Rev 95: 735–758

    CAS  Google Scholar 

  120. Negishi N, Iyoda T, Hashimoto K, Fujishima A (1995) Preparation of transparent TiO2 thin film photocatalyst and its photocatalytic activity. Chem Lett 841–842

    Google Scholar 

  121. Matsubara H, Takada M, Koyama S, Hashimoto K, Fujishima A (1995) Photoactive TiO2 containing paper: preparation and its photocatalytic activity under weak UV light illumination. Chem Lett 767–768

    Google Scholar 

  122. Sopyan I, Murasawa S, Hashimoto K, Fujishima A (1994) Highly efficient TiO2 film photocatalyst: degradation of gaseous acetaldehyde. Chem Lett 723–726

    Google Scholar 

  123. Sakai H, Baba R, Hashimoto K, Fujishima A, Heller A (1995) Local detection of photoelectrochemically produced H202 with a “wired” horseradish peroxidase microsensor. J Phys Chem 99: 11896–11900

    CAS  Google Scholar 

  124. Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R, Sakai H, Hashimoto K, Fujishima A (1994) Photokilling of T-24 human bladder cancer cells with titanium dioxide. Br J Cancer 70: 1107–1111

    CAS  Google Scholar 

  125. Tomkiewicz M (1992) Photoelectrochemical characterization. In: McHardy J, Ludwig F (eds) Electrochemistry of semiconductors and electronics: processes and devices. Noyes Publications, Park Ridge, Chap. 5

    Google Scholar 

  126. Rauh RD (1992) Photoelectrochemical processing of semiconductors. In: McHardy J, Ludwig F (eds) Electrochemistry of semiconductors and electronics: processes and devices. Noyes Publications, Park Ridge, Chap. 4

    Google Scholar 

  127. Japan Kokai (1987) Shape-memory materials and their application. JP 62–192440, Kuraray

    Google Scholar 

  128. Japan Kokai (1988) Shape-memory polymer materials. JP 63–179955, Asahi Chemical

    Google Scholar 

  129. Kuhn W, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high polymer acid networks. Nature 165: 514516

    Google Scholar 

  130. Okui N, Umemoto S (1993) Contraction behavior of poly(acrylo-nitrile) gel fibers. Application to an artificial muscle. In: Tsuruta T, Doyama M, Seno M, Imanishi Y (eds) New functionality materials. Elsevier, Amsterdam, p 165

    Google Scholar 

  131. Irie M, Misumi Y, Tanaka T (1993) Stimuli-responsive polymers: chemical-induced reversible phase separation of an aqueous solution of poly(N-isopropylacrylamide) with pendant crown ether groups. Polymer 34: 4531–4535

    CAS  Google Scholar 

  132. Merian E (1966) Organic fiber-formation research. Text Res J 36: 612–615

    CAS  Google Scholar 

  133. Eisenbach CD (1982) Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect. Polymer 21: 1175–1178

    Google Scholar 

  134. Irie M, Kungwatchakun D (1986) Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 19: 2476–2480

    Google Scholar 

  135. Irie M (1990) Photoresponsive polymers. Adv Polym Sci 94: 27–65

    CAS  Google Scholar 

  136. Irie M (1993) Stimuli-responsive poly(N-isopropylacrylamide). Photo-and chemical-induced phase transitions. Adv Polym Sci 110: 49–65

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Yamazaki, I., Fujishima, A., Tryk, D.A., Irie, M. (1999). Molecular Systems and Their Applications to Energy Conversion. In: Honda, K. (eds) Functionality of Molecular Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68550-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68550-0_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68552-4

  • Online ISBN: 978-4-431-68550-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics