Molecular Systems and Their Applications to Energy Conversion

  • Iwao Yamazaki
  • Akira Fujishima
  • Donald A. Tryk
  • Masahiro Irie


A number of molecular energy conversion systems can be seen in biological organisms, e.g., photosynthesis, vision, muscular movements, and photophobic/ phototactic responses. A particular form of energy, e.g., photonic energy, electric energy, mechanical energy, or chemical energy, is received as a stimulus from the external environment by sensor molecules and then converted to another form of energy. The initial steps in these energy conversions are driven by the transfer of an electron, excitation energy, or a soliton through a molecular channel in which functional molecules are arranged in a specific spatial configuration within polypeptide networks. These processes are characterized by high efficiencies and ultrafast reaction rates. To interprete the mechanisms of such sequential and cooperative reactions, it may be necessary to develop a new theoretical description of the intermolecular interactions which spread the functional molecules along the reaction channel. This description is being sought by detailed analyses of the biological systems, and also by research into artificial molecular systems based on synthesized supramolecules or planned solid complex superstructures. This chapter first considers sequential reactions in biological molecular systems, and then those in artificial systems.


Molecular System Redox Couple Photoinduced Electron Transfer Excitation Energy Transfer Solar Energy Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fleming GR, Van Grondelle R (1994) The primary steps of photosynthesis. Phys Today 47: 48–55Google Scholar
  2. 2.
    Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosythetic reaction centre of Rhodopseudomonas viridis at IN resolution. Nature 318: 618–624Google Scholar
  3. 3.
    Kuhn H (1986) Electron transfer in organized membranes. In: Proceedings of the Robert A. Welch Foundation Conference on Chemical Research XXX. Advances in Electrochemistry. Houston, pp 339–368Google Scholar
  4. 4.
    Holzapfel W, Finkele U, Kaiser W, Oesterheldt D, Scheer H, Stilz HU, Zinth W (1990) Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 5168–5172Google Scholar
  5. 5.
    Kirmaier C, Holten D (1991) An assessment of the mechanism of initial electron transfer in bacterial reaction centers. Biochemistry 30: 609–613Google Scholar
  6. 6.
    Middendorf T, Mazzola L, Gaul D, Schenck C, Boxer S (1991) Photochemical hole-burning spectroscopy of a photosynthetic reaction center mutant with altered charge separation kinetics: properties and decay of the initially excited state. J Phys Chem 95: 10142–10151Google Scholar
  7. 7.
    Chan CK, DiMagno TJ, Chen LXQ, Norris JR, Fleming GR (1991) Mechanism of the initial charge separation in bacterial photosynthetic reaction centers. Proc Natl Acad Sci USA 88: 11202–11206Google Scholar
  8. 8.
    Glazer AN (1984) Phycobilisome, a macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768: 29–51Google Scholar
  9. 9.
    Huber R (1989) A structural basis of light energy and electron transfer in biology. EMBO J 8: 2125–2147Google Scholar
  10. 10.
    Porter G, Tredwell CJ, Searle GFW, Barber J (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Biochim Biophys Acta 501: 232–245Google Scholar
  11. 11.
    Yamazaki I, Tamai N, Yamazaki T, Murakami A, Mimuro M, Fujita Y (1988) Sequential excitation energy transport in stacking multilayers: comparative study between photosynthetic antenna and Langmuir—Blodgett multilayers. J Phys Chem 92: 50355044Google Scholar
  12. 12.
    Mimuro M, Yamazaki I, Tamai N, Katoh T (1989) Excitation energy transfer in phycobilisomes at —196°C isolated from the cyanibacterium Anabaena variabilis (M-3): evidence for the plural transfer pathways to the terminal emitters. Biochim Biophys Acta 973: 153–162Google Scholar
  13. 13.
    Yamazaki I, Ohta N, Yoshinari S, Yamazaki T (1994) Site-selected excitation energy transport in Langmuir—Blodgett multilayer films. In: Masuhara H, DeSchryver FC, Kitamura N, Tamai N (eds) Microchemistry: spectroscopy and chemistry in small domains. North-Holland, Amsterdam, pp 431–440Google Scholar
  14. 14.
    Blankenship RE, Brune DC, Wittmershaus BP (1988) Chlorosome antennas in green photosynthetic bacteria. In: Stevens SE, Bryant D (eds) Light—energy transduction in photosynthesis: higher plants and bacterial models. American Society of Plant PhysiologistsGoogle Scholar
  15. 15.
    Sprague SG, Staehelin LA, DiBartolomeis MJ, Fuller RC (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1021–1031Google Scholar
  16. 16.
    Brune DC, Nozawa T, Blankenship RE (1987) Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry 26: 8644–8652Google Scholar
  17. 17.
    Mimuro M, Nozawa T, Tamai N, Shimada K, Yamazaki I, Lin S, Knox RS, Wittmershaus BP, Brune DC, Blankenship RE (1988) Excitation energy flow in chlorosome antennas of green photosynthetic bacteria. J Phys Chem 93: 7503–7509Google Scholar
  18. 18.
    Pierson BK, Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-f1. Proc Natl Acad Sci USA 80: 80–84Google Scholar
  19. 19.
    Karrasch S, Bullough P, Ghosh R (1995) EMBO J 14: 631–638Google Scholar
  20. 20.
    McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521Google Scholar
  21. 21.
    Külbrandt W (1995) Many wheels make light work. Nature 374: 497–498Google Scholar
  22. 22.
    Van Mourik F, Verwijst RR, Mulder JM, Van Grondelle R (1992) Excitation transfer dynamics and spectroscopic properties of the light-harvesting BChl a complex of Prostecochloris aestuarii. J Lumin 53: 499–502Google Scholar
  23. 23.
    Du M, Xie X, Jia Y, Mets L, Fleming GR (1993) Direct observation of ultrafast energy transfer in PSI core antenna. Chem Phys Lett 201: 535–542Google Scholar
  24. 24.
    Song PS (1984) Phytochrome. In: Wilkins M (ed) Advanced Plant Physiology. Pitman, London, pp 354–379Google Scholar
  25. 25.
    Furuya M (1989) Molecular properties and biogenesis of phytochrome I and II. Adv Biophys 25: 133–167Google Scholar
  26. 26.
    Hershey HP, Barker RF, Idler KB, Lissemore JL, Quail PH (1985) Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequences for two gene products expressed in etiolated Avena. Nucleic Acids Res 13: 85438560Google Scholar
  27. 27.
    Romanowski M, Song PS (1992) Structural domains of phytochrome deduced from homologies in amino-acid sequences. J Protein Chem 11: 139–155Google Scholar
  28. 28.
    Sommer D, Song PS (1990) Chromophore topography and secondary structure of 124kilodalton Avena phytochrome probed by Zn’-induced chromophore modification. Biochemistry 29: 1943–1948Google Scholar
  29. 29.
    Rudiger W, Thummler F, Cmiel E, Schneider S (1983) Chromophore structure of the physiologically active form ( Pfr) of phytochrome. Proc Natl Acad Sci USA 80: 62446248Google Scholar
  30. 30.
    Savakhin S, Wells T, Song PS, Struve WS (1993) Ultrafast pump—probe spectroscopy of native etiolated oat phytochrome. Biochemistry 32: 7512–7518Google Scholar
  31. 31.
    Zhang CF, Farrens DL, Bjorling SC, Song PS, Kliger DS (1992) Time-resolved absorption studies of native etiolated oat phytochrome. J Am Chem Soc 114: 4569–4580Google Scholar
  32. 32.
    Song PS, Hader DP, Poff KL (1980) Set-up photophobic response in the ciliated Stentor coeruleus. Arch Micorobiol 126: 181–186Google Scholar
  33. 33.
    Kim IH, Rhee JS, Huh JW, Florell S, Faure B, Lee KW, Kahsai T, Song PS, Tamai N, Yamazaki T, Yamazaki I (1990) Structure and function of the photoreceptor stentorins in Stentor coeruleus. I. Partial characterization of the photoreceptor organelle and stentorins. Biochem Biophys Acta 1040: 43–57Google Scholar
  34. 34.
    Tao N, Orlando M, Hyon JS, Gross M, Song PS (1993) A new photoreceptor molecule from Stentor coeruleus. J Am Chem Soc 115: 2526–2528Google Scholar
  35. 35.
    Fabczak H, Park PB, Fabczak S, Song PS (1993) Photosensory transduction in ciliates. II. Possible role of G-protein and cGMP in Stentor coeruleus. Photochem Photobiol 57: 702–706Google Scholar
  36. 36.
    Song PS, Kim IH, Florell S, Tamai N, Yamazaki T, Yamazaki I (1990) Structure and function of the photoreceptor stentorins in Stentor coeruleus. II. Primary photoprocess and picosecond time-resolved fluorescence. Biochim Biophys Acta 1040: 58–65Google Scholar
  37. 37.
    Savikhin S, Tao N, Song PS, Struve W (1993) Ultrafast pump—probe spectroscopy of the photoreceptor stentorins from the ciliate Stentor coeruleus. J Phys Chem 97: 1237912386Google Scholar
  38. 38.
    Yamazaki I, Tamai N, Yamazaki T (1990) Electronic excitation transfer in organized molecular assemblies. J Phys Chem 94: 516–525Google Scholar
  39. 39.
    Osuka A, Maruyama K, Mataga N, Asahi T, Yamazaki I, Tamai N (1990) Geometry dependence of intramolecular photoinduced electron transfer in synthetic zinc—ferric hybrid diporphyrins. J Am Chem Soc 112: 4958–4959Google Scholar
  40. 40.
    Osuka A, Nakajima S, Maruyama K, Mataga N, Asahi T, Yamazaki I, Nishimura Y, Ohno T, Nozaki K (1993) 1,2-phenylene-bridge diporphyrin linked with porphyrin monomer and pyromellitimide as a model for a photosynthetic reaction center: synthesis and photoinduced charge separation. J Am Chem Soc 115: 4577–4589Google Scholar
  41. 41.
    Osuka A, Yamada H, Maruyama K, Mataga N, Asahi T, Ohkouchi M, Okada T, Yamazaki I, Nishimura Y (1993) Synthesis and photoexcited-state dynamics of aromatic group-bridged carotenoid—porphyrin dyads and carotenoid—porphyrinpyromellitimide triads. J Am Chem Soc 115: 9439–9452Google Scholar
  42. 42.
    Segawa H, Nakayama N, Shimidzu T (1992) Electrochemical synthesis of one-dimensional donor—acceptor polymers containing oligothiophenes and phosphorus porphyrins. J Chem Soc, Chem Commun 784–786Google Scholar
  43. 43.
    Yonemura H, Nakamura H, Matsuo T (1989) External magnetic field effects on photoinduced electron transfer reactions in phenothiazine—viologen-linked systems complexed with cyclodextrins. Chem Phys Lett 155: 157–161Google Scholar
  44. 44.
    Kuhn H, Möbius D, Bücher H (1972) Spectroscopy of monolayer assemblies. In: Weissberger A, Rossiter BW (eds) Techniques of chemistry, vol 1, part 3B. Wiley, New YorkGoogle Scholar
  45. 45.
    Ahuja R, Möbius D (1989) Photoinduced electron transfer in Langmuir—Blodgett films. Thin Solid Films 179: 457–462Google Scholar
  46. 46.
    Mooney WF, Whitten DG (1986) Energy-and electron-transfer quenching of surfactant trans-stilbenes in supported multilayers: the use of hydrophobic substrate chromophores to determine short-range distance dependence in assemblies. J Am Chem Soc 108: 5712–5719Google Scholar
  47. 47.
    Polymeropoulos EE, Möbius D, Kuhn H (1980) Monolayer assemblies with functional units of sensitizing and conducting molecular components: photovoltage, dark conduction and photoconduction in systems with aluminium and barium electrodes. Thin Solid Films 68: 173–190Google Scholar
  48. 48.
    Tachibana H, Goto A, Nakamura T, Matsumoto M, Manda E, Niino H, Yabe A, Kawabata T (1989) Photoresponsive conductivity in Langmuir—Blodgett films. Thin Solid Films 179: 207–213Google Scholar
  49. 49.
    Yamazaki I, Ohta N (1995) Photochemistry in LB films and its application to molecular switching devices. Pure Appl Chem 67: 209–216Google Scholar
  50. 50.
    Förster Th (1960) Excitation transfer. In: Burton M, Kirby-Smith JS, Magee JL (eds) Comparative effects of radiation. Wiley, New York, pp 300–341Google Scholar
  51. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37–38Google Scholar
  52. 2.
    Gerischer H (1979) Solar photoelectrolysis with semiconductor electrodes. In: Seraphin BO (ed) Solar energy conversion; solid-state physics aspects. Springer, Berlin, Chap. 4Google Scholar
  53. 3.
    Nozik A (1978) Photoelectrochemistry: applications to solar energy conversion. In: Rabinowitch BS, Schurr JM, Strauss HL (eds) Annual review of physical chemistry, vol 29. Annual Reviews, Palo Alto, pp 189–222Google Scholar
  54. 4.
    Wrighton MS (1979) Photoelectrochemical conversion of optical energy to electricity and fuels. Acc Chem Res 12: 303–310Google Scholar
  55. 5.
    Heller A (1981) Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc Chem Res 14: 154–162Google Scholar
  56. 6.
    Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum, New YorkGoogle Scholar
  57. 7.
    Watanabe T, Fujishima A, Honda K (1976) Photoelectrochemical reactions at SrTiO3 single crystal electrode. Bull Chem Soc Jpn 49: 355–358Google Scholar
  58. 8.
    Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, Chap. 14Google Scholar
  59. 9.
    Kolodinski S, Werner JH, Wittchen T, Queisser HJ (1993) Quantum efficiencies ex-ceeding unity due to impact ionization in silicon solar cells. Appl Phys Lett 63: 2405–2407Google Scholar
  60. 10.
    Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28: 141–145Google Scholar
  61. 11.
    Wang A, Zhao J, Green MA (1990) 24% efficient silicon solar cells. Appl Phys Lett 57: 602–604Google Scholar
  62. 12.
    Hodes G, Manassen J, Cahen D (1985) Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature 261: 403–404Google Scholar
  63. 13.
    Inoue T, Watanabe T, Fujishima A, Honda K, Kohayakawa K (1979) Suppression of surface dissolution of CdS photoanode by reducing agents. J Electrochem Soc 124: 719–722Google Scholar
  64. 14.
    Lewis N (1991) An analysis of charge transfer rate constants for semiconductor/liquid interfaces. In: Strauss HL, Babcock GT, Leone SR (eds) Annual review of physical chemistry, vol 42. Annual Reviews, Palo Alto, pp 543–580Google Scholar
  65. 15.
    Gerischer H, Gobrecht (1976) On the power characteristics of electrochemical solar cells. Z Phys Chem 80: 327–330Google Scholar
  66. 16.
    Chang KC, Heller A, Schwartz B, Menezes S, Miller B (1977) Stable semiconductor liquid junction cell with 9 percent solar-to-electrical conversion efficiency. Science 196: 1097–1099Google Scholar
  67. 17.
    Heller A, Chang KC, Miller B (1977) Spectral response and efficiency relations in semiconductor liquid junction solar cells. J Electrochem Soc 124: 697–700Google Scholar
  68. 18.
    Heller A, Schwartz GP, Vadimsky RG, Menezes S, Miller B (1978) Output stability of n-CdSe/Na2S-S-NaOH/C solar cells. J Electrochem Soc 125: 1156–1160Google Scholar
  69. 19.
    Parkinson BA, Heller A, Miller B (1978) Enhanced photoelectrochemical solar-energy conversion by gallium arsenide surface modification. Appl Phys Lett 33: 521–533Google Scholar
  70. 20.
    Johnston WD Jr, Leamy HJ, Parkinson BA, Heller A, Miller B (1980) Effect of ruthenium ions on grain boundaries in gallium arsenide thin film photovoltaic devices. J Electrochem Soc 127: 90–95Google Scholar
  71. 21.
    Heller A, Lewerenz HJ, Miller B (1980) Combined ruthenium lead surface treatment of gallium arsenide photoanodes. Ber Bunsenges Phys Chem 84: 592595Google Scholar
  72. 22.
    Lewerenz HJ, Heller A, DiSalvo FJ (1980) Relationship between surface morphology and solar conversion of WSe2 photoanodes. J Am Chem Soc 102: 1877–1880Google Scholar
  73. 23.
    Menezes S, Lewerenz HJ, Bachmann KJ (1983) Efficient and stable solar cell by interfacial film formation. Nature 305: 615–616Google Scholar
  74. 24.
    Cahen D, Chen YW (1984) n-CuInSe2 based photoelectrochemical cells: improved, stable performance in aqueous polyiodide through rational surface and solution modification. Appl Phys Lett 45: 746–748Google Scholar
  75. 25.
    Licht S, Tenne R, Dagan G, Hodes G, Manassen J, Cahen D, Triboulet R, Rioux J, Levy-Clement C (1985) High efficiency n-Cd(Se,Te)/S- photoelectrochemical cell resulting from solution chemistry control. Appl Phys Lett 46: 608–610Google Scholar
  76. 26.
    Tenne R, Wold A (1985) Passivation of recombination centers in n-WSe2 yields high efficiency (>14%) photoelectrochemical cell. Appl Phys Lett 47: 707–709Google Scholar
  77. 27.
    Tufts BJ, Abrahams IL, Santangelo PG, Ryba GN, Casagrande LG, Lewis NS (1987) Chemical modification of n-GaAs electrodes with Os3+ gives a 15% efficient solar cell. Nature 326: 861–863Google Scholar
  78. 28.
    Licht S, Peramunage D (1990) Efficient photoelectrochemical solar cells from electrolyte modification. Nature 345: 330–333Google Scholar
  79. 29.
    Heller A, Miller B, Lewerenz HJ, Bachmann KJ (1980) An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with p-InP/VC13- VC12- HCl/C. J Am Chem Soc 102: 6555–6556Google Scholar
  80. 30.
    Heller A, Miller B, Thiel FA (1981) 11.5% solar conversion efficiency in the photocathodically protected p-InP/V3+-V2+-HCI/C semiconductor liquid junction cell. Appl Phys Lett 38: 282–284Google Scholar
  81. 31.
    Gronet CM, Lewis NS, Cogan G, Gibbons J (1983) n-Type silicon photoelectrochemistry in methanol: design of a 10.1% efficient semiconductor/liquid junction solar cell. Proc Natl Acad Sci USA 80: 1152–1156Google Scholar
  82. 32.
    Gibbons JW, Cogan GW, Gronet CM, Lewis NS (1984) A 14% efficient nonaqueous semiconductor/liquid junction solar cell. Appl Phys Lett 45: 1095–1097Google Scholar
  83. 33.
    Heben MJ, Kumar A, Zheng C, Lewis NS (1989) Efficient photovoltaic devices for InP semiconductor/liquid junctions. Nature 340: 621–623Google Scholar
  84. 34.
    Tufts BJ, Casagrande LG, Lewis NS, Grunthaner FJ (1990) Erratum: correlations between the interfacial chemistry and current-voltage behavior of n-GaAs/liquid junctions [Appl Phys Lett 57, 1242 (1990)]. Appl Phys Lett 57: 2262–2264Google Scholar
  85. 35.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,2’bieyridyl-4,4’dicarboxylate)ruthenium(II) charge transfer sensitizers (X = Cl-, Br, I, CN- and SCN-) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115: 63826390Google Scholar
  86. 36.
    Narayanan S, Wenham SR, Green MA (1990) 17.8-percent efficiency polycrystalline silicon solar cells. IEEE Trans Electron Dev 37: 382–384Google Scholar
  87. 37.
    Gabor AM, Tuttle JR, Albin DS, Contreras MA, Noufi R, Hermann AM (1994) High-efficiency CuInxGa1_XSe2 solar cells made from (Inx,Ga,_x)2Se3 precursor films. Appl Phys Lett 65: 198–200Google Scholar
  88. 38.
    Bertness KA, Kurtz SR, Friedman DJ, Kibbler AE, Kramer C, Olson JM (1994) 29.5%-efficient GaInP/GaAs tandem solar cells. Appl Phys Lett 65: 989–991Google Scholar
  89. 39.
    Zhao J, Wang A, Altermatt P, Green MA (1995) Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl Phys Lett 66: 3636–3638Google Scholar
  90. 40.
    Henry CH (1980) Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys 51: 4494–4500Google Scholar
  91. 41.
    Schefold J, Vetter M (1994) Solar energy conversion at the p-InP/vanadium3+i2+ semiconductor/electrolyte contact. J Electrochem Soc 141: 2040–2048Google Scholar
  92. 42.
    Parkinson B (1984) On the efficiency and stability of photoelectrochemical devices. Acc Chem Res 17: 431–437Google Scholar
  93. 43.
    Lewis NS (1990) Mechanistic studies of light-induced charge separation at semiconductor/liquid interfaces. Acc Chem Res 23: 176–183Google Scholar
  94. 44.
    Swain GM (1994) The use of CVD diamond thin films in electrochemical systems. Adv Mater 6: 388–392Google Scholar
  95. 45.
    Reuben C, Galun E, Cohen H, Tenne R, Kalish R, Muraki Y, Hashimoto K, Fujishima A, Butler JM, Levy-Clement C (1995) Efficient reduction of nitrite and nitrate to ammonia using thin-film B-doped diamoned electrodes. J Electroanal Chem 396: 233239Google Scholar
  96. 46.
    Tributsch H (1992) Electronic structure, coordination photoelectrochemical pathways and quantum energy conversion by layered transition metal dichalcogenides. In: Aruchamy A (ed) Photoelectrochemistry and photovoltaics of layered semiconductors. Kluwer, DordrechtGoogle Scholar
  97. 47.
    Levy-Clement C, Tenne R (1992) Modification of surface properties of layered compounds by chemical and (photo) electrochemical procedures. In: Aruchamy A (ed) Photoelectrochemistry and photovoltaics of layered semiconductors. Kluwer, DordrechtGoogle Scholar
  98. 48.
    Ueno K, Shimada T, Saiki K, Koma A (1990) Heteroepitaxial growth of layered transition metal dichalcogenides on sulfur-terminated GaAs (111) surfaces. Appl Phys Lett 56: 327–329Google Scholar
  99. 49.
    Mayer T, Lehmann J, Pettenkofer C, Jaegermann W (1992) Coadsorption of Na and Br2 on WS2 (0001). Creating a surface redox couple? Chem Phys Lett 198: 621Google Scholar
  100. 50.
    Jaegermann W (1996) The semiconductor/electrolyte interface: a surface science aproach. In: White BE et al. (eds) Modern aspects of electrochemistry, vol. 30. Plenum, New York, Chap 1Google Scholar
  101. 51.
    Kudo A, Sayama K, Tanaka A, Asakura K, Domen K, Maruya K, Onishi T (1989) Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and 02: structure and reaction mechanism. J Catal 120: 337–352Google Scholar
  102. 52.
    Sayama K, Tanaka A, Domen K, Maruya K, Onishi T (1991) Photocatalytic decomposition of water over platinum-intercalated K4Nb6O17. J Phys Chem 95: 13451348Google Scholar
  103. 53.
    Kim YI, Atherton SJ, Brigham ES, Mallouk TE (1993) Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J Phys Chem 97: 11802–11810Google Scholar
  104. 54.
    Grätzel M, Kalyanasundaram K, Kiwi J (1982) Visible light induced cleavage of water into hydrogen and oxygen in colloidal and microheterogeneous systems. In: Clarke MJ et al. (eds) Structure and bonding 49: solar energy materials. Springer, Berlin, pp 37–125Google Scholar
  105. 55.
    Dyer CK (1990) A novel thin-film electrochemical device for energy conversion. Nature 343: 547–548Google Scholar
  106. 56.
    Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95: 49–68Google Scholar
  107. 57.
    Hagfeldt A, Vlachopoulos N, Grätzel M (1994) Fast electrochromic switching with nanocrystalline oxide semiconductor films. J Electrochem Soc 141: L82 - L84Google Scholar
  108. 58.
    Huang SY, Kavan L, Exnar I, Grätzel M (1995) Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J Electrochem Soc 142: L142 - L144Google Scholar
  109. 59.
    Halmann MM (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275: 115–116Google Scholar
  110. 60.
    Halmann MM (1993) Chemical fixation of carbon dioxide—methods for recycling CO2 into useful products. CRC Press, Boca Raton, Chaps. 1 and 8Google Scholar
  111. 61.
    Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrochemical reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277: 637638Google Scholar
  112. 62.
    Lewis NS, Shreve GA (1993) Photochemical and photoelectrochemical reduction of carbon dioxide. In: Sullivan BP et al. (eds) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, Amsterdam, Chap. 8Google Scholar
  113. 63.
    Randin JP (1976) Carbon. In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements, vol VII. Marcel Dekker, New York, Chap. VII - 1Google Scholar
  114. 64.
    Saeki T, Hashimoto K, Fujishima A, Kimura N, Ornata K (1995) Electrochemical reduction of CO2 with high current density in a CO2-methanol medium. J Phys Chem 99: 8440–8446Google Scholar
  115. 65.
    O11is DF, Al-Ekabi, H (eds) (1993) Photocatalytic purification and treatment of water and air. Elsevier, AmsterdamGoogle Scholar
  116. 66.
    Fox MA, Duly MT (1993) Heterogeneous photocatalysis. Chem Rev 93: 341–357Google Scholar
  117. 67.
    Hoffman MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95: 69–96Google Scholar
  118. 68.
    Heller A (1995). Chemistry and applications of photocatalytic oxidation of thin or- ganic films. Acc Chem Res 28: 503–508Google Scholar
  119. 69.
    Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results. Chem Rev 95: 735–758Google Scholar
  120. 70.
    Negishi N, Iyoda T, Hashimoto K, Fujishima A (1995) Preparation of transparent TiO2 thin film photocatalyst and its photocatalytic activity. Chem Lett 841–842Google Scholar
  121. 71.
    Matsubara H, Takada M, Koyama S, Hashimoto K, Fujishima A (1995) Photoactive TiO2 containing paper: preparation and its photocatalytic activity under weak UV light illumination. Chem Lett 767–768Google Scholar
  122. 72.
    Sopyan I, Murasawa S, Hashimoto K, Fujishima A (1994) Highly efficient TiO2 film photocatalyst: degradation of gaseous acetaldehyde. Chem Lett 723–726Google Scholar
  123. 73.
    Sakai H, Baba R, Hashimoto K, Fujishima A, Heller A (1995) Local detection of photoelectrochemically produced H202 with a “wired” horseradish peroxidase microsensor. J Phys Chem 99: 11896–11900Google Scholar
  124. 74.
    Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R, Sakai H, Hashimoto K, Fujishima A (1994) Photokilling of T-24 human bladder cancer cells with titanium dioxide. Br J Cancer 70: 1107–1111Google Scholar
  125. 75.
    Tomkiewicz M (1992) Photoelectrochemical characterization. In: McHardy J, Ludwig F (eds) Electrochemistry of semiconductors and electronics: processes and devices. Noyes Publications, Park Ridge, Chap. 5Google Scholar
  126. 76.
    Rauh RD (1992) Photoelectrochemical processing of semiconductors. In: McHardy J, Ludwig F (eds) Electrochemistry of semiconductors and electronics: processes and devices. Noyes Publications, Park Ridge, Chap. 4Google Scholar
  127. 1.
    Japan Kokai (1987) Shape-memory materials and their application. JP 62–192440, KurarayGoogle Scholar
  128. 2.
    Japan Kokai (1988) Shape-memory polymer materials. JP 63–179955, Asahi ChemicalGoogle Scholar
  129. 3.
    Kuhn W, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high polymer acid networks. Nature 165: 514516Google Scholar
  130. 4.
    Okui N, Umemoto S (1993) Contraction behavior of poly(acrylo-nitrile) gel fibers. Application to an artificial muscle. In: Tsuruta T, Doyama M, Seno M, Imanishi Y (eds) New functionality materials. Elsevier, Amsterdam, p 165Google Scholar
  131. 5.
    Irie M, Misumi Y, Tanaka T (1993) Stimuli-responsive polymers: chemical-induced reversible phase separation of an aqueous solution of poly(N-isopropylacrylamide) with pendant crown ether groups. Polymer 34: 4531–4535Google Scholar
  132. 6.
    Merian E (1966) Organic fiber-formation research. Text Res J 36: 612–615Google Scholar
  133. 7.
    Eisenbach CD (1982) Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect. Polymer 21: 1175–1178Google Scholar
  134. 8.
    Irie M, Kungwatchakun D (1986) Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 19: 2476–2480Google Scholar
  135. 9.
    Irie M (1990) Photoresponsive polymers. Adv Polym Sci 94: 27–65Google Scholar
  136. 10.
    Irie M (1993) Stimuli-responsive poly(N-isopropylacrylamide). Photo-and chemical-induced phase transitions. Adv Polym Sci 110: 49–65Google Scholar

Copyright information

© Springer-Verlag Tokyo 1999

Authors and Affiliations

  • Iwao Yamazaki
  • Akira Fujishima
  • Donald A. Tryk
  • Masahiro Irie

There are no affiliations available

Personalised recommendations