Molecular Systems and Their Applications to Information Transduction

  • Masahiro Irie
  • Katsumi Yoshino
  • Tsuyoshi Kawai
  • Shogo Saito
  • Kazuyuki Horie
  • Hachiro Nakanishi
  • Iwao Yamazaki
  • Masuo Aizawa
  • Mamoru Ohashi


Information transduction using organic molecular systems opens up new aseas in the field of optoelectronic devices. Although at present inorganic materials dominate most electronic and optoelectronic devices, they are being challenged on several fronts by organic materials. In the field of display, for example, organic liquid crystals provide flat-panel displays with light weight and low power consumption, and these displays are indispensable to carry-on type electronic computers and others. It is expected that electrochromic and electroluminescent organic materials will be used in future display devices. Photoconductors using organic dyes are now replacing Se-based inorganic photoconductors in electrophotography. In optical recording, photoreactive materials, such as photo-chromic and photochemical hole-burning materials, are candidates for future ultra-high-density memory. Organic molecules and molecular organisms are the most suitable materials for detecting bio-originated compounds. This part introduces the working principles of functional molecular systems, and describes the design, synthesis, and evaluation of organic materials for information transduction.


Molecular System Redox Enzyme Hole Burning Electron Transport Layer Photochromic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yoshino K (1988) Fundamentals and application of conducting polymer (in Japanese). IPC, TokyoGoogle Scholar
  2. 2.
    Chiang CK, Fincher Jr CR, Park YW, Heeger AJ, Shirakawa H, Luis EJ, Gau SC, MacDiarmid AG (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39: 1098–1100Google Scholar
  3. 3.
    Yoshino K, Kaneto K, Inuishi Y (1983) Proposal of electro-optical switching and memory devices utilizing doping and undoping processes of conducting polymer. Jpn J Appl Phys 22: L157 - L158Google Scholar
  4. 4.
    Kaneto K, Yoshino K, Inuishi Y (1983) Characteristics of electrooptic devices using conducting polymers, polythiophene and polypyrrole. Jpn J Appl Phys 22: L412 - L414Google Scholar
  5. 5.
    Yoshino K, Takiguchi T, Hayashi S, Park DH, Sugimoto R (1986) Electrical and optical properties of poly(p-phenylene vinylene) and effects of electrochemical doping. Jpn J Appl Phys 25: 881–886Google Scholar
  6. 6.
    Yoshino K, Takahashi H, Morita S, Kawai T, Sugimoto R (1994) Electrochemical characteristics of stable polyacetylene derivative: poly(o-trimethylsilylphenyl acetylene). Jpn J Appl Phys 33: L254 - L257Google Scholar
  7. 7.
    Murase I, Ohnishi T, Taniguchi T, Hirooka M (1984) Highly conducting poly(pphenylenevinylene) prepared from a sulfonium salt. Polym Commun 25: 327–329Google Scholar
  8. 8.
    Murase I, Ohnishi T, Taniguchi T, Hirooka M (1985) Alkoxy-substituent effects of poly(p-phenylenevinylene) conductivity. Polym Commun 26: 362–363Google Scholar
  9. 9.
    Onoda M, Manda Y, Iwasa T, Nakayama H, Amakawa K, Yoshino K (1990) Electrical, optical, and magnetic properties of poly(2,5-diethoxy-p-phenylene vinylene). Phys Rev B42: 11826–11832Google Scholar
  10. 10.
    Onoda M, Morita S, Iwasa T, Nakayama H, Amakawa K, Yoshino K (1991) In situ absorption spectra measurements in poly(1,4-naphthalene vinylene) during electrochemical doping. J Phys D: Appl Phys 24: 1152–1157Google Scholar
  11. 11.
    Yoshino K, Yin XH, Morita S, Kawai T, Ozaki M, Jin SH, Choi SK (1993) Unique electrical and optical properties of conducting polymeric liquid crystal. Jpn J Appl Phys 32: L1673 - L1676Google Scholar
  12. 12.
    Kaneto K, Agawa H, Yoshino K (1987) Cycle life, stability, and characteristics of color switching cells utilizing polythiophene films. J Appl Phys 61: 1197–1201Google Scholar
  13. 13.
    Yoshino K, Kuwabara T, Kawai T (1990) Learning effect in the doping process of conducting polymer. Jpn J Appl Phys 29: L995 - L997Google Scholar
  14. 14.
    Kawai T, Kuwabara T, Wang S, Yoshino K (1990) Electrochemical characteristics of chemically prepared poly(3-alkylthiophene). J Electrochem Soc 137: 3793–3797Google Scholar
  15. 15.
    Idle BP, Hagen G (1993) Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. J Electrochem Soc 140: 3560–3564Google Scholar
  16. 16.
    Schoot SC, Ponjee JJ, van Dam HT, van Doorn RA, Bolwijn PT (1973) New electrochromic memory display. Appl Phys Lett 23: 64–65Google Scholar
  17. 17.
    van Dam HT, Ponjee JJ (1974) Electrochemically generated colored films of insoluble viologen radical compounds. J Electrochem Soc 121: 1555–1558Google Scholar
  18. 18.
    Bewick A, Cunningham DW, Lowe AC (1987) Electrochemical and spectroscopic characterisation of structural reorganisation in N,N’-dialkylpyridinium cation radical deposits. Macromol Chem, Macromol Symp 8: 355–370Google Scholar
  19. 19.
    van Uitert LG, Zydzik GJ, Singh S, Camlibel I (1980) Anthraquinoide red display cells. Appl Phys Lett 36: 109–111Google Scholar
  20. 20.
    Yasuda A, Seto J (1988) Electrochromic properties of vacuum evaporated organic thin films. Part 1. J Electroanal Chem 247: 193–202Google Scholar
  21. 21.
    Kaufman FB, Engler EM (1979) Solid state spectroelectrochemistry of crosslinked donor bound polymer films. J Am Chem Soc 101: 547–549Google Scholar
  22. 22.
    Lacaze PC, Dubois JM, Desbene-Monvernay A, Desbene PL, Basselier JJ, Richard D (1983) Polymer-modified electrodes as electrochromic material. Part III. J Electroanal Chem 147: 107–110Google Scholar
  23. 23.
    Akahoshi H, Toshima S, Itaya K (1981) Electrochemical and spectroelectrochemical properties of polyviologene complex and electrodes. J Phys Chem 85: 818–822Google Scholar
  24. 24.
    Kawai T, Koshido T, Yoshino K (1993) Electrochemical properties of cis-1,2-dicyano1,2-bis(2,4,5-trimethyl-3-thienyl) ethene and its application. Chem Express 8: 553–556Google Scholar
  25. 25.
    Nicholson MM, Pizzarello FA (1979) Charge transport in oxidation product of lutetium diphthalocyanine. J Electrochem Soc 126: 1490–1495Google Scholar
  26. 26.
    Yamana M, Kashiwagaki N, Yamamoto M, Nakano T (1987) A storage type electrochromic display utilizing poly-Co-QTPP films. Jpn J Appl Phys 26: L1113 — L1116Google Scholar
  27. 27.
    Itaya K, Akahoshi H, Toshima S (1982) Polymer modified electrodes. IL J Electrochem Soc 129: 762–767Google Scholar
  28. 28.
    Elliott CM, Redepenning JG (1986) Stability and response studies of multicolor electrochromic polymer modified electrodes prepared from tris(5,5’-dicarboxyester2,2’-bipyridine)ruthenium(II). J Electroanal Chem 197: 219–223Google Scholar
  29. 29.
    Nicholson MM, Pizzarello FA (1980) Galvanostatic transients in lutetium diphthalocyanine films. J Electrochem Soc 127: 821–827Google Scholar
  30. 30.
    Collins GCS, Shiffrin DJ (1982) The electrochromic properties of lutetium and other phthalocyanines. J Electroanal Chem 139: 335–369Google Scholar
  31. 31.
    Yanagi H, Toriida M (1994) Electrochromic oxidation and reduction of cobalt and zinc naphthalocyanine thin films. J Electrochem Soc 141: 64–70Google Scholar
  32. 32.
    Yamamoto H, Sugiyama T, Tanaka M (1985) Electrochromism of metal-free phthalocyanine Langmuir—Blodgett films. Jpn J Appl Phys 24: L305 — L308Google Scholar
  33. 33.
    Oyama N, Anson FC (1979) Polymeric ligands as anchoring groups for the attach-ment of metal complexes to graphite electrode surfaces. J Am Chem Soc 101: 3450–3456Google Scholar
  34. 34.
    Itaya K, Akahori H, Toshima S (1982) Electrochemistry of Prussian blue modified electrodes. J Electrochem Soc 129: 1498–1500Google Scholar
  35. 35.
    Hayashi S, Etoh H, Saito S (1986) Electroluminescence of perylene films with a conducting polymer as an anode. Jpn J Appl Phys 25: L773 — L775Google Scholar
  36. 36.
    Tang CW, Vanslyke SA (1987) Organic electroluminescent diode. Appl Phys Lett 51: 913–915Google Scholar
  37. 37.
    Saito S, Aminaka E, Tsutsui T, Era M (1994) J Luminescence 60 /61: 902–905Google Scholar
  38. 38.
    Wakimoto T, Murayama R, Nakada H, Imai K (1991) Organic electroluminescent diodes with doped quinacridone derivatives. Poly Preprints Jpn 40: 3600–3602Google Scholar
  39. 39.
    Adachi C, Tsutsui T, Saito S (1991) Electroluminescent mechanism of organic multi-layer thin film devices. Optoelectronics 6: 25–36Google Scholar
  40. 40.
    Era M, Adachi C, Tsutsui T, Saito S (1992) Organic electroluminescent device with cyanine dye LB film as an emitter. Thin Solid Films 210 /211: 468–470Google Scholar
  41. 41.
    Takada N, Tsutsui T, Saito S (1993) Controlled spontaneous emission in organic electroluminescent devices. Optoelectronics 8: 403–412Google Scholar
  42. 42.
    Chance RR, Prock A, Silbey R (1976) Comments on the classical theory of energy transfer. 2. J Chem Phys 65: 2527–2531Google Scholar
  43. 43.
    Takada N, Tsutsui T, Saito S (1994) Strongly directed emission from controlledspontaneous-emission electroluminescent diodes with europium complex as an emitter. Jpn J Appl Phys 33: L863 — L866Google Scholar
  44. 1.
    Fischer E Hirshberg Y(1952) Formation of coloured forms of spirans by lowtempenrature irradiation J Chem Soc:4522–4524Google Scholar
  45. 2.
    Irie M (1990) Photoresponsive polymers. Adv Polym Sci 84: 27–65Google Scholar
  46. 3.
    Bertelson RC (1971) In: Brown GH (ed) (1971) Photochromism. Wiley Interscience, New York, pp 45–431Google Scholar
  47. 4.
    Arakawa S, Kondo H, Seto J (1985) Photochromism. Synthesis and properties of indolinospirobenzothiopyrans. Chem Lett: 1805–1808Google Scholar
  48. 5.
    Kawauchi S, Yoshida H, Yamashita N, Ohira M, Saeda S, Irie M (1990) A new photochromic spiro [3H-1,4]-oxazines. Bull Chem Soc Jpn 63: 267–268Google Scholar
  49. 6.
    Rickwood M, Marsden SD, Ormsby ME, Stannton AL, Wood DW, Hepworth JP, Gabbutt CD (1994) Red colouring photochromic 6’-substituted spiroindolinonaphth [2,1-B][1,41 oxazines. Mol Cryst Liq Cryst 246: 17–24Google Scholar
  50. 7.
    Irie M, Mohri M (1988) Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J Org Chem 53: 803–808Google Scholar
  51. 8.
    Hanazawa M, Sumiya R, Horikawa Y, Irie M (1992) Thermally irreversible photo-chromic systems. Reversible photocyclization of 1,2-bis(2-methylbenzo[b]thiophen-3yl)perfluorocycloalkene derivatives. J Chem Soc Chem Commun 206–207Google Scholar
  52. 9.
    Uchida K, Irie M (1995) A photochromic dithienylethene that turns yellow by UV irradation. Chem Lett 969–970Google Scholar
  53. 10.
    Irie M, Miyatake O, Sumiya R, Hanazawa M, Horikawa Y, Uchida K (1994) Photochromism of diarylethenes with intralocking arms. Mol Cryst Liq Cryst 246: 155158Google Scholar
  54. 11.
    Gilat SL, Kawai SH, Lehn J-M (1993) Light-triggered electrical and optical switching devices. J Chem Soc Chem Commun 1439–1442Google Scholar
  55. 12.
    Kulisch JR, Franke M, Irmscher R, Buchal Ch (1992) Optooptical switching in ion-implanted poly(methyl methacrylate) waveguide. J Appl Phys 71: 3123–3126Google Scholar
  56. 13.
    Tanio M, Irie M (1994) Refractive index of organic photochromic dye-amorphous polymer composites. Jpn J Appl Phys 33: 3942–3946Google Scholar
  57. 14.
    Tomlinson WJ, Chandross EA, Fork RL, Pryde CA, Lamola AA (1972) Reversible photodimerization. Appl Opt 11: 533–548Google Scholar
  58. 15.
    Nakamura S, Irie M (1988) Thermally irreversible photochromic systems. A theoretical study. J Org Chem 53: 6136–6138Google Scholar
  59. 16.
    Yokoyama Y, Kurita Y (1994) Photochromism of fulgides and related compounds. Mol Cryst Liq Cryst 246: 87–94Google Scholar
  60. 17.
    Tomoda A, Kaneko A, Tsuboi H, Matsushima R (1992) Photochromism of heterocyclic fulgides. Bull Chem Soc Jpn 65: 1262–1267Google Scholar
  61. 18.
    Uchida K, Nakayama K, Irie M (1990) Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(benzo[b]thiophen-3-yl)ethene derivatives. Bull Chem Soc Jpn 63: 1311–1315Google Scholar
  62. 19.
    Irie M, Miyatake O, Uchide K (1992) Blocked photochromism of diarylethenes. J Am Chem Soc 114: 8715–8716Google Scholar
  63. 20.
    Irie M, Miyatake O, Uchida K, Eriguchi T (1994) Photochromic diarylethenes with intralocking arms. J Am Chem Soc 116: 9894–9900Google Scholar
  64. 21.
    Yokoyama Y, Yamane T, Kurita Y (1991) Photochromism of a protonated 5dimethylaminoindolylfulgide: a model of a non-destructive readout for a photon mode optical memory. J Chem Soc Chem Commun 1722–1724Google Scholar
  65. 22.
    Uchida M, Irie M (1993) Two-photon photochromism of a naphthopyran derivative. J Am Chem Soc 115: 6442–6443Google Scholar
  66. 23.
    Walz J, Ulrich K, Port H, Wolf HC, Wonner J, Effenberger F (1993) Fulgides as switches for intramolecular energy transfer. Chem Phys Lett 213: 321–324Google Scholar
  67. 24.
    Feringa BL, Jager WF, de Lange B, Meijer EW (1991) Chiroptical molecular switch. J Am Chem Soc 113: 5468–5470Google Scholar
  68. 25.
    Moerner WE (1988) Persistent spectral hole burning: science and applications. Springer, BerlinGoogle Scholar
  69. 26.
    Horie K, Furusawa A (1992) Photochemical hole burning. In: Rabek JF (ed) Progress in photochemistry and Photophysics. CRC Press, Boca Raton, vol 5, Chap 2Google Scholar
  70. 27.
    Moerner WE (1994) Examining nanoenvironments in solids on the scale of a single, isolated impurity molecule. Science 265: 46–53Google Scholar
  71. 28.
    Winnacker A, Shelby RM, Macfarlane RM (1985) Photon-gated hole burning: a new mechanism using two-step photoionization. Opt Lett 10: 350–352Google Scholar
  72. 29.
    Sakoda K, Kominami K, Iwamoto M (1988) High temperature photochemical hole burning of tetrasodium 5,10,15,20-tetra(4-sulfonatophenyl)porphin in polyvinylalcohol. Jpn J Appl Phys 27: L1304 — L1306Google Scholar
  73. 30.
    Horie K, Mori T, Naito T, Mita I (1988) Photochemical hole burning of tetraphenylporphin in phenoxy resin. Appl Phys Lett 53:935–937; J Appl Phys 66: 60416047Google Scholar
  74. 31.
    Prass B, von Borczyskowski C, Stehlik D (1989) Photochemically burnt holes with high-temperature stability (1989) J Phys Chem 93: 8276–8278Google Scholar
  75. 32.
    Jaaniso R, Bill H (1991) Room-temperature persistent spectral hole burning in Sm-doped SrFC11/2Br1/2 mixed crystals. Europhys Lett 16: 569Google Scholar
  76. 33.
    Zhang J, Huang S, Yu J (1991) Persistent hole burning at room temperature. Chinese J Lumin 12: 181–182Google Scholar
  77. 34.
    Hirao K, Todoroki S, Cho DH, Soga N (1993) Room-temperature persistent hole burning of Sm2+ in oxide glasses. Opt Lett 18: 1586–1587Google Scholar
  78. 35.
    Kurita A, Kushida T, Izumitani T, Matsukawa M (1994) Room-temperature persistent spectral hole burning in Sm2+-doped fluoride glasses. Opt Lett 19: 314–316Google Scholar
  79. 36.
    Bauer R, Osvet A, Sildos I, Bogner U (1993) Room temperature persistent spectral hole burning in neutron-irradiated Iab-type diamond. J Lumin 56: 57–60Google Scholar
  80. 37.
    Sauter B, Bräuchle C (1992) Efficient persistent spectral hole-burning of free-base octaethylporphine adsorbed on y-alumina between 1.6 and 90 K. Chem Phys Lett 192: 321–326Google Scholar
  81. 38.
    Ehrl M, Deeg FW, Bräuchle C, Franke O, Sobbi A, Schulz-Ekloff G, Wöhrle D (1994) High-temperature non-photochemical hole-burning of phthalocyaninezinc derivatives embedded in a hydrated AIPO4 5 molecular sieve. J Phys Chem 98: 47–52Google Scholar
  82. 39.
    Machida S, Horie K, Yamashita T (1995) Photochemical hole burning of organic dye doped in inorganic semiconductor. Appl Phys Lett 66: 1240–1242Google Scholar
  83. 40.
    Murase N, Horie K, Terao M, Ojima M (1992) Theoretical study of the recording density limit of photochemical hole-burning memory. J Opt Soc Am B 9: 9981005Google Scholar
  84. 41.
    Murase N, Horie K (1993) Mechanism of laser-induced hole filling in photochemical hole burning. Chem Phys Lett 209: 42–46Google Scholar
  85. 42.
    Murase N, Horie K (1994) Excitation processes of a dye doped into an amorphous material investigated by photochemical hole-burning. Jpn J Appl Phys 33: 10461052Google Scholar
  86. 43.
    Murase N, Horie K (1994) Quantitative analysis of wavelength and temperature dependence of laser-induced hole filling in photochemical hole-burning. Chem Phys 183: 135–146Google Scholar
  87. 44.
    Vacha M, Machida S, Horie K (1995) Photochemical hole burning in higher excited states (Soret absorption bands) of tetrabenzo-and tetraphenylporphins. J Lumin 64:115–123; Chem Phys Lett 243:297–301; J Phys Chem 99: 13163–13167Google Scholar
  88. 45.
    Jankowiak R, Hayes JM, Small GJ (1993) Spectral hole burning spectroscopy in amorphous molecular solids and proteins. Chem Rev 93: 1471–1502Google Scholar
  89. 46.
    Machida S, Horie K, Kyono O, Yamashita T (1993) Photon-gated photochemical hole burning by two-color sensitization in an azide polymer matrix. J Lumin 56: 85–92Google Scholar
  90. 47.
    Suzuki T, Ikemoto M, Machida S, Vacha M, Horie K, Yamashita T (1994) Relationship between spectral hole burning and Stokes shift of organic dyes in polymer system. Chem Lett 1247–1250Google Scholar
  91. 48.
    Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New YorkGoogle Scholar
  92. 49.
    Chem Soc Jpn (ed) (1992) Organic nonlinear optical materials. Gakkai Shuppan Center, Tokyo (Kikan Kagaku Sosetsu, vol 15 )Google Scholar
  93. 50.
    Zyss J (ed) (1994) Molecular nonlinear optics. Academic Press, OrlandoGoogle Scholar
  94. 51.
    Tokura Y (1992) New aspects of organic nonlinear optical materials. In: Chem Soc Jpn (ed) Organic nonlinear optical materials. Gakkai Shuppan Center, Tokyo (Kikan Kagaku Sosetsu, vol 15 ) pp 191–203Google Scholar
  95. 52.
    Umegaki S (1992) Nonlinear optics and organic materials. In: Chem Soc Jpn (ed) Organic nonlinear optical materials. Gakkai Shuppan Center, Tokyo (Kikan Kagaku Sosetsu, vol 15 ) pp 1–42Google Scholar
  96. 53.
    Duan XM, Okada S, Oikawa H, Matsuda H, Nakanishi H (1994) Comparatively large second-order hyperpolarizability of aromatic sulfonate anion with short cutoff wavelength. Jpn J Appl Phys 33: L1559–1561Google Scholar
  97. 54.
    Matsuda H, Okada S, Nakanishi H (1992) Molecular and crystal engineering of polydiacetylenes for enlarged nonlinear optical susceptibility. Mol Cryst Liq Cryst 217: 43–46Google Scholar
  98. 55.
    Kobayashi S (1992) Structure dependence of the optical nonlinearity for pseudoisocyanine J-aggregates. In: Extended abstracts of the third symposium on photonics materials. Basic technologies for future industries. Japan High Polymer Center, Tokyo, pp 23–32Google Scholar
  99. 56.
    Kasai H, Nalwa HS, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakanishi H (1992) A novel preparation method of organic microcrystals. Jpn J Appl Phys 31: L1132 — L1134Google Scholar
  100. 57.
    Birnboim MH, Ma WP (1990) Nonlinear optical properties of structured nanoparticle composites. Mater Res Soc Symp Proc 164: 277–282Google Scholar
  101. 58.
    Arrathoon R (ed) (1989) Optical computing: digital and symbolic. Dekker, New YorkGoogle Scholar
  102. 59.
    Kuhn H, Möbius D, Bücher H (1972) Spectroscopy of monolayer assemblies. In: Weissberger A, Rossiter BW (eds) Techniques of chemistry, vol 1, part 3B. Wiley, New York, pp 577–701Google Scholar
  103. 60.
    Förster TH (1948) Zwischenmolekulare Energiewanderung and Fluoreszenz. Ann Phys 2: 55–75Google Scholar
  104. 61.
    Baumann J, Fayer MD (1986) Excitation energy transfer in disordered two-dimensional and anisotropic three-dimensional systems: effects of spatial geometry on time-resolved observables. J Chem Phys 85: 4087–4107Google Scholar
  105. 62.
    Yamazaki I, Tamai N, Yamazaki T (1990) Electronic excitation transfer in organized molecular assemblies. J Phys Chem 94: 516–525Google Scholar
  106. 63.
    Duerr H, Bouas-Laurent H (eds) (1990) Photochromism. Molecules and systems. Elsevier, AmsterdamGoogle Scholar
  107. 64.
    Yamazaki I, Okazaki S, Minami T, Ohta N (1994) Optically switching parallel processors by means of Langmuir—Blodgett multilayer films. Appl Opt 33: 7561–7568Google Scholar
  108. 65.
    Minami T, Tamai N, Yamazaki T, Yamazaki I (1991) Picosecond time-resolved fluorescence spectroscopy of the photochromic reaction of spiropyran in Langmuir—Blodgett films. J Phys Chem 95: 3988–3993Google Scholar
  109. 66.
    Tanida J, Ichioka Y (1986) OPALS optical parallel array logic system. Appl Opt 25: 1565–1572Google Scholar
  110. 67.
    Tanida J, Ichioka Y (1988) Programming of optical array logic. 1. Image data processing. Appl Opt 27: 2926–2930Google Scholar
  111. 1.
    Aizawa M (1991) Principles and applications of electrochemical and optical biosensors. Anal Chim Acta 250: 249–256Google Scholar
  112. 2.
    Hill HAO (1981) Bioelectrocatalysis. Phil Trans R Soc London A, 302: 69–75Google Scholar
  113. 3.
    Cass AEG, Devis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plothin EV, Scott LDL, Turner APF (1984) Anal Chem 1880Google Scholar
  114. 4.
    Degani Y, Heller AJ (1987) Direct electrochemical communication between chemically modified enzymes and metal electrodes. J Phys Chem 91: 6–12Google Scholar
  115. 5.
    Aizawa M, Yabuki S, Shionhara H (1987) Electrochemical preparation of conductive enzyme membrane. In: Torii S (ed) Proc 1st Int Symp Electroorganic Synthesis. Elsevier, Amsterdam 353–360;Google Scholar
  116. 6.
    Aizawa M, Yabuki S, Shionhara H (1989) Electroconductive enzyme membrane. J Chem Soc, Chem Commun 945–946Google Scholar
  117. 7.
    Foulds NC, Lowe CR (1986) J Chem Soc, Faraday Trans 1, 82: 1259Google Scholar
  118. 8.
    Aizawa M, Yabuki S, Shinohara H, Ikariyama Y (1989) Molecular wire and interface for bioelectronic molecular devices. In: Aviram A (ed) Molecular electronics: science and technology. Engineering Foundation, New York, pp 139–150;Google Scholar
  119. 9.
    Aizawa M, Yabuki S, Shinohara H, Ikariyama Y(1988) Biomolecular interface. In: Hong FT (ed) Molecular electronics. Biosensors and biocomputers. Plenum Press, New York, pp 269–276Google Scholar
  120. 10.
    Aizawa M, Khan GF, Shinohara H, Ikariyama Y (1994) Molecular interfacing for electron transfer of redox enzymes. In: Aizawa M (ed) Chemical sensor technology, vol 5. Kodansha, Tokyo, pp 157–175Google Scholar
  121. 11.
    Khan GF, Kobatake E, Shinohara H, Ikariyama Y, Aizawa M (1992) Molecular interface for an activity controlled enzyme electrode and its application for the determination of fructose. Anal Chem 64: 1254–1258Google Scholar
  122. 12.
    Ishizuka T, Kobatake E, Ikariyama Y, Aizawa M (1991) Amperometric biosensor for alcohol using enzyme—NAD—mediator electron transferring system. Technical Digest 10th Sensor Symp pp 73–76Google Scholar
  123. 13.
    Aizawa M (1994) Immunosensors for clinical analysis. Adv Clin Chem 31: 24727512.Google Scholar
  124. 14.
    Aizawa M, Suzuki S, Nakagawa Y, Shinohara R, Ishiguro I (1977) An immuno sensor for specific protein. Chem Lett 779–782Google Scholar
  125. 15.
    Aizawa M, Kato S, Suzuki S (1977) Immunoresponsive membrane. I. Membrane potential change associated with an immunochemical reaction between membrane-bound antigen and free antibody. J Membrane Sci 2: 125–132Google Scholar
  126. 16.
    Yamamoto N, Nagasawa Y, Sawai M, Suda T, Tsubomura H (1978) Potentiometric investigations of antigen—antibody and enzyme—enzyme inhibitor reactions using chemically modified electrodes. J Immunol Methods 22: 309–317Google Scholar
  127. 17.
    Aizawa M, Morioka A, Matsuoka H, Suzuki S, Nagamura Y, Shinohara R, Ishiguro (1976) An enzyme immunosensor for IgG. J Solid-Phase Biochem 1: 319–328Google Scholar
  128. 18.
    Aizawa M, Morioka A, Suzuki S, Nagamura Y (1979) Enzyme immunosensor. III. Amperometric determination of human chorionic gonadotropin by membrane-bound antibody. Anal Biochem 94: 22–28Google Scholar
  129. 19.
    Aizawa M, Morioka A, Suzuki S (1980) An enzyme immunosensor for the electrochemical determination of the tumor antigen a-fetoprotein. Anal Chim Acta 115: 6167Google Scholar
  130. 20.
    Aizawa M, Suzuki S, Kato T, Fujiwara T, Fujita Y (1980) Solid-phase luminescent enzyme immunoassay of IgG and anti-IgG using a transparent and nonporous antibody-bound plate. J Appl Biochem 2: 190–195Google Scholar
  131. 21.
    Schaffar BPH, Wolfbeis QS (1991) In: Blum LJ, Coulet PR (eds) Biosensors—principles and applications. Marcel Dekker, New York, pp 163–194Google Scholar
  132. 22.
    Liedberg B, Nylander C, Lundstrom I (1983) Sensors Actuators 4: 299Google Scholar
  133. 23.
    Lofas S, Johnson B (1990) A novel hydrogel matrix on gold surface plasmon resonance sensors for flat and efficient covalent immobilization of ligands. J Chem Soc, Chem Commun 1526–1528Google Scholar
  134. 24.
    Ikariyama Y, Kunoh H, Aizawa M (1987) Electrochemical luminescence-based homogeneous immunoassay. Biochem Biophys Res Commun 128: 987–992Google Scholar
  135. 25.
    Aizawa M, Tanaka M, Ikariyama Y, Shinohara H (1989) Luminescence biosensors. J Biolumin Chemilumin 4: 535–542Google Scholar
  136. 26.
    Owaku K, Goto M, Ikariyama Y, Aizawa M (1995) Protein A LB film for antibody immobilization and its use in optical immunosensing. Anal Chem 67: 1613–1616Google Scholar
  137. 27.
    Campbell AK (1988) Chemiluminescence. Ellis Horwood, ChichesterGoogle Scholar
  138. 28.
    Lee J, Seliger HH (1972) Quantum yields of the luminol chemiluminescence reaction in aqueous and aprotic solvents. Photochem Photobiol 15: 227237Google Scholar
  139. 29.
    Adam W, Beinhauser A, Hauser H (1989) Activation parameters and excitation yields in 1,2-dioxetane chemiluminescence. In: Scaiano JC (ed) Handbook of organic photochemistry, vol II. CRC Press, Ottawa, pp 271–328Google Scholar
  140. 30.
    Turro NJ (1978) Modern molecular photochemistry. Benjamin, Menro Park, pp 597602Google Scholar
  141. 31.
    Reguero M, Bernardi F, Bottoni A, Olivucci M, Robb MA (1991) Chemiluminescent decomposition of 1,2-dioxetanes: an MC-SCF/MP2 study with VB analysis. J Am Chem Soc 113: 1566–1572Google Scholar
  142. 32.
    Koo J-Y, Schuster GB (1977) Chemically initiated electron exchange luminescence. A new chemiluminescent reaction path for organic perroxides. J Am Chem Soc 99: 61076109;Google Scholar
  143. 33.
    Koo J-Y, Schuster GB(1978) Chemiluminescence of diphenoyl peroxide. Chemically initiated electron exchange luminescence. A new general mechanism for chemical production of electronically excited state. J Am Chem Soc 100: 4496–4503Google Scholar
  144. 34.
    Schuster GB (1979) Chemiluminescence of organic peroxides. Conversion of ground-state reaction to excited-state products by the chemically initiated electrom-exchange luminescence mechanism. Acc Chem Res 12: 366–373Google Scholar
  145. 35.
    Catalani LH, Wilson T (1989) Electron transfer and chemiluminescence. Two inefficient systems: 1,4-dimethoxy-9,10-diphenylanthracene peroxide and diphenoyl peroxide. J Am Chem Soc 111: 2633–2639Google Scholar
  146. 36.
    McCapra F (1977) Alternative mechanism for dioxetan decomposition. J Chem Soc Chem Commun 946–947Google Scholar
  147. 37.
    McCapra F (1990) Chemiluminescence and bioluminescence. J Photochem Photobiol A 51: 21–28Google Scholar
  148. 38.
    White EH, Roswell DF, Dupont AC, Wilson AA (1987) Chemiluminescence involving acidic and ambient ion light emitters. The chemiluminescence of the 9acridinepercarboxylate ion. J Am Chem Soc 109: 5189–5196Google Scholar
  149. 39.
    Yang NC, Yang X-Q (1987) A new type of pericyclic chemiluminescence. J Am Chem Soc 109: 3804–3805Google Scholar
  150. 40.
    Kimura M, Nishikawa H, Kura H, Lim H, White EH (1993) Maximization of the chemiluminescence efficiency of 1,4,5-triarylhydroperoxy-4H-isoimidazoles. Chem Lett 505–508Google Scholar
  151. 41.
    Van Dyke K (ed) (1985) Bioluminescence and chemiluminescence: instruments and applications. CRC Press, Baca Raton 158 3.3 Chemoactive Molecular SystemsGoogle Scholar
  152. 42.
    Gundermann KD, McCapra F (1987) Chemiluminescence in organic chemistry. Springer, Berlin, Chap. 13Google Scholar
  153. 43.
    Schaap AP, Chen T-S, Handley RS, DeSilva R, Giri BP (1987) Chemical and enzymatic triggering of 1,2-dioxetanes. 2. Fluoride-induced chemiluminescence from tertbutyldimethylsilyloxy-substituted dioxetanes. Tetrahedron Lett 28: 1155–1158Google Scholar
  154. 44.
    Harvey EN (1952) Bioluminescence. Academic Press, New YorkGoogle Scholar
  155. 45.
    Shimomura O, Musicki B, Kishi Y (1988) Semi-synthetic aequorin. Biochem J 251: 405–410Google Scholar
  156. 46.
    Kajiyama N, Nakano E (1991) Isolation and characterization of mutants of firefly luciferase which produce different colors of light. Protein Eng 4: 691–695Google Scholar
  157. 47.
    Wood KV, Lam YA, Seliger HH, McElroy WD (1989) Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science 244: 700702Google Scholar
  158. 48.
    Nakamura H, Kishi Y, Shimomura O, Morse D, Hastings JW (1989) Structure of dinoflagellate luciferin and its enzymatic and nonenzymatic air-oxidation products. J Am Chem Soc 111: 7607–7611Google Scholar
  159. 49.
    Beck S, Koester H (1990) Application of dioxetane chemiluminescent probes to molecular biology. Anal Chem 62: 2258–2270Google Scholar

Copyright information

© Springer-Verlag Tokyo 1999

Authors and Affiliations

  • Masahiro Irie
  • Katsumi Yoshino
  • Tsuyoshi Kawai
  • Shogo Saito
  • Kazuyuki Horie
  • Hachiro Nakanishi
  • Iwao Yamazaki
  • Masuo Aizawa
  • Mamoru Ohashi

There are no affiliations available

Personalised recommendations