Architectural Design and Preparation of Molecular Systems

  • Takeo Shimidzu
  • Tokio Yamabe
  • Tohru Sato
  • Kazuyoshi Tanaka
  • Yasuhiko Shirota
  • Toyoki Kunitake
  • Masamichi Fujihira
  • Akira Fujishima
  • Yoshio Nosaka
  • Masashi Kunitake
  • Kingo Itaya


The function of a systematized and assembled group of molecules is essentially the same as that of a single molecule. The most fundamental functions of a molecular system are its electron and ion conducting properties. These involve information transduction and energy conversion, although their conduction mechanisms are different. They are seen in polymeric molecules, molecular clusters, and molecular assembly. A polymeric molecule should be considered as a unit repeating material. Bilayer Langmuir-Blodgett (LB) membranes are well-organized molecular assemblies which are prepared utilizing their self-assembling properties. A forced preparative method gives ultrathin material, ultrafine particles, STM prepared molecular materials, etc. They all have their own characteristics and distinguishing functions. In addition, the properties of all molecules remain more or less the same when the molecules are clustered and assembled. The polymers, the molecular assemblies, and the molecular clusters present us not only with their own functions, but also with a stage where the functional molecules can act effectively. In this chapter, the molecular design and fabrication of conducting polymers, molecular assemblies, and molecular clusters are described as one of the most essential, fundamental molecular functional materials.


Polymer Electrolyte Scanning Tunneling Microscopy Solid Polymer Electrolyte Highly Orient Pyrolytic Graphite Ultrathin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56–58CrossRefGoogle Scholar
  2. 2.
    Bacon R (1960) Growth, structure, and properties of graphite whiskers. J Appl Phys 31: 283–290CrossRefGoogle Scholar
  3. 3.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1 nm-diameter. Nature 363: 603–615CrossRefGoogle Scholar
  4. 4.
    Uchida K, Yumura M, Ohshima S, Kuriki Y, Yase K, Ikazaki F. Proceedings of the 5th General Symposium on C60, 5–6, August 1993, HachiojiGoogle Scholar
  5. 5.
    Olk CH, Heremans JP (1994) Scanning tunneling spectroscopy of carbon nanotubes. J Mater Res 9: 259–262CrossRefGoogle Scholar
  6. 6.
    Okahara K, Tanaka K, Aoki H, Sato T, Yamabe T (1994) Band structures of carbon nanotubes with bond-alternation patterns. Chem Phys Lett 219: 462–468CrossRefGoogle Scholar
  7. 7.
    Tanaka K, Sato T, Yamabe T, Okahara K, Uchida K, Yumura M, Niino H, Ohshima S, Kuriki Y, Yase K, Ikazaki F (1994) Electronic properties of carbon nanotube. Chem Phys Lett 223: 65–68CrossRefGoogle Scholar
  8. 8.
    Hiura H, Ebbesen TW, Tanigaki T, Takahashi H (1993) Raman studies of carbon nanotubes. Chem Phys Lett 202: 509–512CrossRefGoogle Scholar
  9. 9.
    Jishi RA, Venkataraman L, Dresselhaus MS, Dresselhaus G (1993) Phonon modes in carbon nanotubules. Chem Phys Lett 209: 77–82CrossRefGoogle Scholar
  10. 10.
    Tanaka K, Kobashi M, Sanekata H, Yamabe T, Yamauchi J, Yata S (1991) Magnetic susceptibility and magnetization measurements of polyacenic semiconductive materials. Phys Rev B43: 8277–8281CrossRefGoogle Scholar
  11. 11.
    Langer L, Stockman L, Heremans JP, Bayot V, Olk CH, Van Haesendonck C, Bruynseraede Y, Issi JP (1994) Electrical resistance of a carbon nanotube bundle. J Mater Res 9: 927–932CrossRefGoogle Scholar
  12. 12.
    Singer LS, Wagoner G (1962) Electron spin resonance in polycrystalline graphite. J Chem Phys 37: 1812–1817CrossRefGoogle Scholar
  13. 13.
    Pietronero L, Tosatti E (eds) (1981) Physics of intercalation compounds. Springer, Berlin (Solid-state physics, vol 38 )CrossRefGoogle Scholar
  14. 14.
    Tanaka K, Ohzeki K, Yamabe T, Yata S (1984) A study on the pristine and the doped polyacenic semiconductive materials. Synth Met 9: 41–52CrossRefGoogle Scholar
  15. 15.
    Lauginie P, Estrade H, Conard J, Guerard D, Lagrange P, Makrini ME (1980) Graphite lamellar compounds EPR studies. Physica 99B: 514–520Google Scholar
  16. 16.
    Tanaka K, Koike T, Nishino H, Yamabe T, Yamauchi J, Deguchi Y, Yata S (1987) ESR study of in situ doped polyacenic semiconductive material with iodine and bromine. Synth Met 18: 521–526CrossRefGoogle Scholar
  17. 17.
    Kosaka M, Ebbesen TW, Hiura H, Tanigaki K (1994) Electron spin resonance of carbon nanotubes. Chem Phys Lett 225: 161–164CrossRefGoogle Scholar
  18. 18.
    Tanaka K, Ohzeki K, Nankai S, Yamabe T, Shirakawa H (1983) The electronic structures of polyacene and polyphenanthrene. J Phys Chem Solids 44: 1069–1075CrossRefGoogle Scholar
  19. 19.
    Tanaka K, Koike T, Ueda K, Ohzeki K, Yamabe T, Yata S (1985) Electronic structures of polyacene and polyphenanthrene. Design of one-dimensional graphite. Synth Met 11: 61–73Google Scholar
  20. 20.
    Tanaka K, Okahara K, Okada M, Yamabe T (1993) Why some bucky tubes would be metallic? Fullerene Sci Tech 1: 137–144CrossRefGoogle Scholar
  21. 21.
    Yamabe T, Okahara K, Okada M, Tanaka K (1993) Electronic properties of buckytube model. Synth Met 55–57: 3142–3147CrossRefGoogle Scholar
  22. 22.
    Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 7: 319–327CrossRefGoogle Scholar
  23. 23.
    Wright PV (1976) An anomalous transition to a lower activation energy for dc electrical conduction above the glass-transition temperature. J Polym Sci, Polym Phys Ed 14: 955–957CrossRefGoogle Scholar
  24. 24.
    Armand MB, Chabagno JM, Duclot M (1979) Polyether as solid electrolytes. In: Vashisha P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids. Elsevier North-Holland, Amsterdam, pp 131–136Google Scholar
  25. 25.
    MacCallum JR, Vincent CA (eds) (1987) Polymer electrolyte reviews, vol 1. Elsevier Applied Science, LondonGoogle Scholar
  26. 26.
    Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88: 109–124CrossRefGoogle Scholar
  27. 27.
    Robitaille CD, Fauteux D (1986) Phase diagrams and conductivity characterization of some PEO-LiX electrolytes. J Electrochem Soc 133: 315–325CrossRefGoogle Scholar
  28. 28.
    Payne DR, Wright PV (1982) Morphology and ionic conductivity of some lithium ion complexes with poly(ethylene oxide). Polymer 23: 690–693CrossRefGoogle Scholar
  29. 29.
    Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts—poly(ethylene oxide) adducts. Solid State Ionics 11: 91–95CrossRefGoogle Scholar
  30. 30.
    Takebe Y, Shirota Y (1994) Poly(tetrahydrofurfryl acrylate) as a new host polymer for polymer-salt hybrid ionic conductors. Solid State Ionics 68: 1–4CrossRefGoogle Scholar
  31. 31.
    Zhu Z, Einset AG, Yang CY, Chen WX, Wnek GE (1994) Synthesis of polysiloxanes bearing cyclic carbonate side chains. Dielectric properties and ionic conductivities of lithium triflate complexes. Macromolecules 27: 4076–4079Google Scholar
  32. 32.
    Takebe Y, Hochi K, Matsuba T, Shirota Y (1994) Synthesis of a new family of comb polymers with side-chain esters and ionic conductivities of their films containing lithium trifluoromethane sulfonate. J Mater Chem 4: 599–604CrossRefGoogle Scholar
  33. 33.
    Tonge JS, Shriver DF (1987) Increased dimensional stability in ionically conducting polyphosphazenes systems. J Electrochem Soc 134: 269–270CrossRefGoogle Scholar
  34. 34.
    Cowie JMG, Sadaghianizadeh K (1990) Effect of side chain length and crosslinking on the ac conductivity of oligo(ethylene oxide) comb-branch polymer-salt mixture. Solid State Ionics 42: 243–249CrossRefGoogle Scholar
  35. 35.
    Watanabe M, Togo M, Sanui K, Ogata N, Kobayashi T, Ohtaki Z (1984) Ionic conductivity of polymer complexes formed by poly(ß-propiolactone) and lithium perchlorate. Macromolecules 17: 2908–2912CrossRefGoogle Scholar
  36. 36.
    Bannister DJ, Davies GR, Ward IM, McIntyre JE (1984) Ionic conductivities of poly(methoxy polyethylene glycol monomethacrylate) complexes with LiSO3CH3. Polymer 25: 1600–1602CrossRefGoogle Scholar
  37. 37.
    Kobayashi N, Uchiyama M, Shigehara K, Tsuchida E (1985) Ionically high conductive solid electrolytes composed of graft copolymer-lithium salt hybrid. J Phys Chem 89: 987–991CrossRefGoogle Scholar
  38. 38.
    Cowie JMG, Martin ACS (1991) Ionic conductivity in oligo(ethylene oxide) esters of poly(itaconic acis)—salt mixtures: effect of side-chain length. Polymer 32: 24112417Google Scholar
  39. 39.
    Blonsky PM, Shriver DF, Austin P, Allcock HR (1984) Polyphosphazene solid electrolytes. J Am Chem Soc 106: 6854–6855CrossRefGoogle Scholar
  40. 40.
    Spindler R, Shriever DF (1988) Synthesis, NMR characterization, and electrical properties of siloxane-based polymer electrolytes. Macromolecules 21: 648–654Google Scholar
  41. 41.
    Walker Jr CW, Salomon M (1993) Improvement of ionic conductivity in plasticized PEO-based solid polymer electrolytes. J Electrochem Soc 140: 3409–3412CrossRefGoogle Scholar
  42. 42.
    Lee HS, Yang XQ, McBreen J, Xu ZS, Skotheim TA, Okamoto Y (1994) Ionic conductivity of a polymer electrolyte with modified carbonate as a plasticizer for poly(ethylene oxide). J Electrochem Soc 141: 886–889CrossRefGoogle Scholar
  43. 43.
    Koksbang R, Olsen II, Shackle D (1994) Review of hybrid polymer electrolytes and rechargeable lithium batteries. Solid State Ionics 69: 320–335CrossRefGoogle Scholar
  44. 44.
    Andrei M, Roggero A, Marchese L, Passerini S (1994) Highly conductive solid polymer electrolyte for smart windows. Polymer 35: 3592–3597CrossRefGoogle Scholar
  45. 45.
    Wieczorek W, Such K, Florjanczyk Z, Stevens JR (1994) Polyether, polyacrylamide, LiC1O4 composite electrolytes with enhanced conductivity. J Phys Chem 98: 6840–6850CrossRefGoogle Scholar
  46. 46.
    Inoue K, Nishikawa Y, Tanigaki T (1991) High-conductivity electrolytes composed of polystyrene carrying pendant oligo(oxyethylene)cyclotriphosphazenes and LiC1O4. J Am Chem Soc 113: 7609–7613CrossRefGoogle Scholar
  47. 47.
    Watanabe M, Yamada S, Sanui K, Ogata N (1993) High ionic conductivity of new polymer electrolytes consisting of polypyridinium, pyridinium and aluminium chloride. J Chem Soc Chem Commun 929–931Google Scholar
  48. 48.
    Angell CA, Liu C, Sanchez E (1993) Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362: 137–139CrossRefGoogle Scholar
  49. 49.
    Abraham KM, Alamgir M (1990) Li+-conductive solid polymer electrolytes with liquid-like conductivity. J Electrochem Soc 137: 1657–1658CrossRefGoogle Scholar
  50. 50.
    Croce F, Gerace F, Dautzemberg G, Passerini S, Appetecchi GB, Scrosati B (1994) Synthesis and characterization of highly conducting gel electrolytes. Electrochim Acta 39: 2187–2194CrossRefGoogle Scholar
  51. 51.
    Yasuda Y, Takebe Y, Fukumoto M, Inada H, Shirota Y (1996) 4,4’,4“Tris(stearoylamino)triphenylamine as a novel material for functional molecular gels. Adv Mater 8: 740–741Google Scholar
  52. 52.
    Yasuda Y, Iishi E, Inada H, Shirota Y (1996) Novel low-molecular-weight organic gel: N,N’,N“-tristearyltrimesamide/organic solvent system. Chem Lett 575–576Google Scholar
  53. 1.
    Fendler JH (1982) Membrane mimetic chemistry. Wiley-Interscience, New York, Chap. 6Google Scholar
  54. 2.
    Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8: 660–668CrossRefGoogle Scholar
  55. 3.
    Gebicki JM, Hicks M (1973) Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 3243: 232–234CrossRefGoogle Scholar
  56. 4.
    Hargreaves WR, Deamer DW (1978) Liposomes from ionic, single-chain amphiphiles. Biochemistry 17: 3759–3768CrossRefGoogle Scholar
  57. 5.
    Kunitake T (1992) Synthetic bilayer membranes: molecular design and self organization. Angew Chem, Int Ed Engl 31: 709–726CrossRefGoogle Scholar
  58. 6.
    Fuhrhop JH, Köning J (1994) Membranes and molecular assemblies: the synkinetic approach. Royal Society of Chemistry, Cambridge, Chap. 2Google Scholar
  59. 7.
    Brockerhoff H (1977) In: van Tamelen EE (ed) Bioorganic chemistry vol 3. Academic, New YorkGoogle Scholar
  60. 8.
    Tanford C (1973) Micelle shape. In: The hydrophobic effects. Formation of micelles and biological membranes. Wiley-Interscience, New York, pp 71–80Google Scholar
  61. 9.
    Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2: 15251568Google Scholar
  62. 10.
    Gray WG, Winsor PA (1976) Genetic relationships between non-amphiphilic and amphiphilic mesophases of the “fused” type. In: Friberg S (ed.) Lyotropic liquid crystals. American Chemical Society, Washington, D.C., pp 1–12CrossRefGoogle Scholar
  63. 11.
    Kunitake T, Okahata Y (1977) A totally synthetic bilayer membrane. J Am Chem Soc 99: 3860CrossRefGoogle Scholar
  64. 12.
    Kunitake T, Okahata Y (1980) Formation of stable bilayer assemblies in dilute aqueous solution from ammonium amphiphiles with the diphenylazomethine segment. J Am Chem Soc 102: 549–553CrossRefGoogle Scholar
  65. 13.
    Kunitake T, Okahata Y, Shimomura M, Yasunami S, Takarabe K (1981) Formation of stable bilayer assemblies in water from single-chain amphiphiles. Relationship between the amphiphile structure and the aggregate morphology. J Am Chem Soc 103: 5401–5413Google Scholar
  66. 14.
    Cho I, Park JG (1987) Giant helical superstructures formed by cationic cholesterol-containing polymers. Chem Lett 977–978Google Scholar
  67. 15.
    Menger FM, Yamasaki Y (1993) Hyperextended amphiphiles. Bilayer formation from single-tailed compounds. J Am Chem Soc 115: 3840–3841Google Scholar
  68. 16.
    Kunitake T, Kimizuka N, Higashi N, Nakashima N (1984) Bilayer membranes of triple-chain ammonium amphiphiles. J Am Chem Soc 106: 1978–1983CrossRefGoogle Scholar
  69. 17.
    Kimizuka N, Ohira H, Tanaka M, Kunitake T (1990) Bilayer membranes of four-chained ammonium amphiphiles. Chem Lett 29–32Google Scholar
  70. 18.
    Okahata Y, Kunitake T (1979) Formation of stable monolayer membranes and related structures in dilute aqueous solution from two-headed ammonium amphiphiles. J Am Chem Soc 101: 5231–5234CrossRefGoogle Scholar
  71. 19.
    Kimizuka N, Kawasaki T, Kunitake T (1993) Self-organization of bilayer membranes from amphiphilic networks of complementary hydrogen bonds. J Am Chem Soc 115: 4387–4388CrossRefGoogle Scholar
  72. 20.
    Kim JM, Kunitake T (1989) Stabilization of a phosphate molecular bilayer in organic media by complexation with Cat+ ion. Chem Lett 959–962Google Scholar
  73. 21.
    Kunieda H, Nakamura K, Evans DF (1991) Formation of reversed vesicles. J Am Chem Soc 113: 1051–1053CrossRefGoogle Scholar
  74. 22.
    Ishikawa Y, Kuwahara H, Kunitake T (1994) Self-assembly of bilayers from double-chain fluorocarbon amphiphiles in aprotic organic solvents: thermodynamic origin and generalization of the bilayer assembly. J Am Chem Soc 116: 5579–5591CrossRefGoogle Scholar
  75. 23.
    Kuwahara H, Hamada M, Ishikawa Y, Kunitake T (1993) Self-organization of bilayer assemblies in a fluorocarbon medium. J Am Chem Soc 115: 3002–3003CrossRefGoogle Scholar
  76. 24.
    Gaines Jr GL (1966) Insoluble monolayers at liquid gas interfaces. Wiley, New YorkGoogle Scholar
  77. 25.
    Kuhn H, Möbius D, Bucher H (1973) Spectroscopy of monolayer assemblies. In: Weissberger A, Rositer BW (eds) Techniques of chemistry vol 1. Wiley, New YorkGoogle Scholar
  78. 26.
    Ulman A (1991) An introduction to ultra thin films from Langmuir—Blodgett to self-assembly. Academic Press, New YorkGoogle Scholar
  79. 27.
    Roberts G (ed) (1990) Langmuir—Blodgett films. Plenum, New YorkGoogle Scholar
  80. 28.
    Hönig D, Möbius D (1991) Direct visualization of monolayers at the air—water interface by Brewster angle microscopy. J Phys Chem 95: 4590–4592CrossRefGoogle Scholar
  81. 29.
    Fujihira M (1995) Study of thin organic films by various scanning force microscopes. In: Güntherodt H-J, Anselmetti D, Meyer E (eds) Forces in scanning probe methods. Kluwer, Dordrecht, pp 567–591Google Scholar
  82. 30.
    Fujihira M, Monobe H, Muramatsu H, Ataka T (1995) Measurements of lateral distribution of fluorescence intensities and fluorescence spectra of microareas by a combined SNOM and AFM. Ultramicroscopy 57: 118–123;CrossRefGoogle Scholar
  83. 30.
    Muramatsu H, Chiba N, Ataka T, Monobe H, Fujihira M (1995) Scanning near-field optic/atomic-force microscopy. Ultramicroscopy 57: 141–146;CrossRefGoogle Scholar
  84. 31.
    Fujihira M (1996) Fluorescence microscopy and spectroscopy by scanning near-field optical/atomic force microscopy (SNOM—AFM). In: Nieto-Vesperinas M, Garcia N (eds) Optics at the nanometer scale. Kluwer, Dordrecht, pp 205–221Google Scholar
  85. 32.
    Meyer E, Overney R, Lüthi R, Brodbeck D, Howald L, Frommer J, Güntheodt H-J, Wolter O, Fujihira M, Takano H, Gotoh Y (1992) Friction force microscopy of mixed Langmuir—Blodgett films. Thin Solid Films 220: 132–137;CrossRefGoogle Scholar
  86. 33.
    Overney RM, Meyer E, Frommer J, Brodbeck D, Lüthi R, Howald L, Güntherodt H-J, Fujihira M, Takano H, Gotoh Y (1992) Friction measurements on phase-separated thin films with a modified atomic force microscope. Nature 359: 133–135;CrossRefGoogle Scholar
  87. 34.
    Fujihira M (1997) Friction force microscopy of organic thin films and crystals. In: Bhushan B (ed) Micro/nanotribology and its applications. Kluwer, Dordrecht, pp 239–260.Google Scholar
  88. 35.
    Fujihira M, Gotoh Y (1992) Polyion complexed Langmuir—Blodgett films. In: Göpel W, Ziegler C (eds) Nanostructures base on molecular materials. VCH Publishers, Weinheim, pp 177–193Google Scholar
  89. 36.
    Meyer E, Overney R, Brodbeck D, Howald L, Lüthi R, Frommer J, Güntherodt H-J (1992) Friction and wear of Langmuir—Blodgett films observed by friction force microscopy. Phys Rev Lett 69: 1777–1780CrossRefGoogle Scholar
  90. 37.
    Vogel V, Möbius D (1988) Local surface potentials and electric dipole moments of lipid monolayers: contributions of the water/lipid and the lipid/air interfaces. J Colloid Interface Sci 126: 408–420CrossRefGoogle Scholar
  91. 38.
    Parsons R (1954) In: Bockris JO’M (ed) Modern aspects of electrochemistry. Butterworths, London, vol 1, pp 103–179Google Scholar
  92. 39.
    Yokoyama H, Saito K, Inoue T (1992) Scanning Maxwell stress microscopy. Mol Electron Bioelectron 3: 79–88Google Scholar
  93. 40.
    Fujihira M, Kawate H, Yasutake M (1992) Scanning surface potential microscopy for local surface analysis. Chem Lett 1992: 2223–2226;CrossRefGoogle Scholar
  94. 41.
    Fujihira M, Kawate H (1994) Scanning surface potential microscope for characterization of Langmuir—Blodgett films. Thin Solid Films 242: 163–169;CrossRefGoogle Scholar
  95. 42.
    Fujihira M, Kawate H (1994) Structural study of Langmuir—Blodgett films by scanning surface potential microscopy. J Vac Sci Technol B 12: 1604–1608CrossRefGoogle Scholar
  96. 43.
    Pohl DW, Courjon D (eds) (1993) Near field optics. NATO ASI Ser E, vol 242. Kluwer, DordrechtGoogle Scholar
  97. 44.
    Bezig E, Trautman JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257: 189–195CrossRefGoogle Scholar
  98. 45.
    van Hulst NF, Moers MHP, Noordman OFJ, Faulkner T, Segerink FB, van der Werf KO, de Grooth BG, Bölger B (1992) Operation of a scanning near-field optical microscope in reflection in combination with a scanning force microscope. Proc SPIE 1639: 36–43CrossRefGoogle Scholar
  99. 46.
    Fujihira M, Monobe H, Muramatsu H, Ataka T (1995) Near-field optical microscopic recording on Langmuir—Blodgett films and chemically modified surfaces. Ultramicroscopy 57: 176–179.CrossRefGoogle Scholar
  100. 47.
    Fujihira M (1995) Photoinduced electron transfer and energy transfer in Langmuir—Blodgett films. In: Birge RR (ed) Molecular and biomolecular electronics. Advances in Chemistry Ser 240, American Chemical Society, Washington, pp 373–394;CrossRefGoogle Scholar
  101. 48.
    Fujihira M, Sakomura M, Aoki D, Koike A (1996) Scanning probe microscopies for molecular photodiodes. Thin Solid Films 273: 168–176;CrossRefGoogle Scholar
  102. 49.
    Fujihira M (1995) Photoinduced electron transfer in monolayer assemblies and its application to artificial photosynthesis and molecular devices. In: Ulman A (ed) Thin films, vol 20. Academic Press, San Diego, pp 239–277Google Scholar
  103. 50.
    Stern JE, Terris BD, Mamin HJ, Rugar D (1988) Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl Phys Lett 53: 2717–2719CrossRefGoogle Scholar
  104. 51.
    Pomeranz M, Aviram A, McCorkle RA, Li L, Schrott AG (1992) Rectification of STM current to graphite covered with phthalocyanine molecules. Science 255: 11151118Google Scholar
  105. 1.
    Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14: 61–65CrossRefGoogle Scholar
  106. 2.
    Harima Y, Yamashita K, Suzuki H (1984) Spectral sensitization in an organic p—n junction photovoltaic cell. Appl Phys Lett 45: 1144–1145CrossRefGoogle Scholar
  107. 3.
    Takada J, Awaji H, Koshioka M, Nevin WA, Imanishi M, Fukada N (1994) Copper phthalocyanine—titanium oxide multilayers. J Appl Phys 75: 4055–4059CrossRefGoogle Scholar
  108. 4.
    Sagisaka S, Ando M, Iyoda T, Shimidzu T (1993) Preparation and properties of amphiphilic polythiophene Langmuir—Blodgett films. Thin Solid Films 230: 65–69CrossRefGoogle Scholar
  109. 5.
    Shimidzu T, Iyoda T, Segawa H (1994) Functionalization of conducting polymer for advanced materials. In: Prasad PN (ed) Frontiers of polymers and advanced materials. Plenum, New YorkGoogle Scholar
  110. 6.
    Iyoda T, Toyoda H, Fujitsuka M, Nakahara R, Tsuchiya H, Honda K, Shimidzu T (1991) The 100-A-order depth profile control of polypyrrole-poly(3-methylthiophene) composite thin film by potential-programmed electropolymerization. J Phys Chem 95: 5215–5220CrossRefGoogle Scholar
  111. 7.
    Nosaka Y, Shigeno H, Ikeuchi T (1995) Formation of polynuclear cadmium—thiolate complexes and CdS clusters in aqueous solution studied by means of stopped-flow and NMR spectroscopies. J Phys Chem 99: 8317–8322CrossRefGoogle Scholar
  112. 8.
    Ekimov AI, Hache F, Schanne-Kline MC, Ricard D, Flytzanis C, Kudryavtsev IA, Yazeva TV, Rodina AV, Efros Al L (1993) Absorption and intensity-dependent photoluminesence measurements on CdSe quantum dots: assignment of the first electronic transitions. J Opt Soc Am B 10: 100–107CrossRefGoogle Scholar
  113. 9.
    Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddie A, Eychmueller A, Weller H (1994) CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J Phys Chem 98: 7665–7673CrossRefGoogle Scholar
  114. 10.
    Yumoto J, Fukushima S, Kubodera K (1987) Observation of optical bistability in CdS„Sel_x doped glasses with 25-psec switching time. Opt Lett 22: 832–834CrossRefGoogle Scholar
  115. 11.
    Takagawara T (1993) Enhancement of excitonic optical nonlinearity in a quantum dot array. Optoelectronics 6: 545–555Google Scholar
  116. 12.
    Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270: 1335–1338CrossRefGoogle Scholar
  117. 13.
    Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emiting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370: 354357Google Scholar
  118. 14.
    Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Electroluminescence from CdSe quantum-dot/polymer composites. Appl Phys Lett 66: 1316–1318CrossRefGoogle Scholar
  119. 15.
    Brus L (1994) Luminescence for silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon. J Phys Chem 98: 3575–3581CrossRefGoogle Scholar
  120. 16.
    Nosaka Y (1994) Ultrasmall particles of semiconductor for photocatalysts. J Catal Soc Jpn 36: 507–514Google Scholar
  121. 17.
    Kamat PV (1995) Tailoring nanostructured thin films. Chemtech 22–28Google Scholar
  122. 18.
    Weller H, Eychmueller A (1995) Photochemistry of semiconductor nanoparticles in solution and thin-film electrodes. Adv Photochem 20: 165–216CrossRefGoogle Scholar
  123. 19.
    Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95: 49–68CrossRefGoogle Scholar
  124. 20.
    Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266: 1961–1966CrossRefGoogle Scholar
  125. 21.
    Fendler JH, Meldrum FC (1995) The colloid chemical approach to nanostructured materials. Adv Mater 7: 607–632CrossRefGoogle Scholar
  126. 22.
    Ohtani H, Wilson RJ, Chiang S, Mate CM (1988) Scanning tunneling microscopy observations of benzene molecules on the Rh(111)–(3 x 3) (C6H6 + 2C0) surface. Phys Rev Lett 60: 2398–2401CrossRefGoogle Scholar
  127. 23.
    Hallmark VM, Chiang S, Brown JK, Woll C (1991) Real-space imaging of the molecular organization of naphthalene on platinum(111). Phys Rev Lett 66: 48–51CrossRefGoogle Scholar
  128. 24.
    Weiss PS, Eigler DM (1993) Site dependence of the apparent shape of a molecule in scanning tunneling microscopy images: benzene on Pt(111). Phys Rev Lett 71: 31393142Google Scholar
  129. 25.
    Lippe! PH, Wilson RJ, Miller MD, Woll C, Chiang S (1989) High-resolution imaging of copper–phthalocyanine by scanning tunneling microscopy. Phys Rev Lett 62: 171174Google Scholar
  130. 26.
    Foster JS, Frommer JE (1988) Imaging of liquid crystals using a tunnelling microscope. Nature 333: 542–545CrossRefGoogle Scholar
  131. 27.
    For example, Rabe JP (1992) Molecular at interfaces: in materials and life sciences. Ultramicroscopy 42: 41–54CrossRefGoogle Scholar
  132. 28.
    For example, Sano M, Sasaki DY, Kunitake T (1992) Polymerization-induced epitaxy: scanning tunneling microscopy of a hydrogen-bonded sheet of polyamide on graphite. Science 258: 441–443CrossRefGoogle Scholar
  133. 29.
    Alves CA, Smith EL, Porter MD (1992) Atomic scale imaging of alkanethiolate monolayers at gold surfaces with atomic force microscopy. J Am Chem Soc 114: 12221227Google Scholar
  134. 30.
    Rabe JP, Buchholz S (1991) Commensurability and mobility in two-dimensional molecular patterns on graphite. Science 253: 424–427CrossRefGoogle Scholar
  135. 31.
    Sleator T, Tycko R (1988) Observation of individual organic molecules at a crystal surface with use of a scanning tunneling microscope. Phys Rev Lett 60: 14181421Google Scholar
  136. 32.
    Yoshimura M, Shigekawa H, Yamauchi H, Saito G, Saito Y, Kawazu A (1991) Surface structure of the organic conductor beta-(BEDT-TTF)2I3 observed by scanning tunneling microscopy (where BEDT-TTF is is(ethylenedithio)tetrafulvalene). Phys Rev B 44: 1970–1972CrossRefGoogle Scholar
  137. 33.
    Bard AJ, Abruna HD, Chidsay CE, Faulkner LR, Feldberg SW, Itaya K, Majda M, Melroy O, Murray RW, Porter MD, Soriaga MP, White HS (1993) The electrode/ electrolyte interface—a status report. J Phys Chem 97: 7147–7173CrossRefGoogle Scholar
  138. 34.
    Wiesendanger R, Güntherodt HJ (eds) (1992) Scanning tunneling microscopy II. Springer, BerlinGoogle Scholar
  139. 35.
    Tao NJ, Lindsay SM (1992) In situ scanning tunneling microscopy study of iodine and bromine adsorption on gold(111) under potential control. J Phys Chem 96: 5213–5217CrossRefGoogle Scholar
  140. 36.
    Tao NJ, DeRose JA, Lindsay SM (1993) Self-assembly of molecular superstructures studies by in situ scanning tunneling microscopy: DNA bases on Au(111). J Phys Chem 97: 910–919CrossRefGoogle Scholar
  141. 37.
    Srinivasan R, Murphy JC, Fainchtein R, Pattabiraman N (1991) Electrochemical STM of condensed guanine on graphite. J Electroanal Chem 312: 293–300CrossRefGoogle Scholar
  142. 38.
    Kunitake M, Batina N, Itaya K (1995) Self-organized porphyrin array on iodine-modified Au(111) in electrolyte solutions: in situ scanning tunneling microscopy study. Langmuir 11: 2337–2340CrossRefGoogle Scholar
  143. 39.
    Batina N, Kunitake M, Itaya K (1996) Highly ordered molecular arrays formed on iodine-modified Au(111) in solution: in situ STM imaging. J Electroanal Chem 405: 245–250CrossRefGoogle Scholar
  144. 40.
    Lipkowski J, Ross PN (eds) (1992) Adsorption of molecules at metal electrodes. VCH Publishers, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1999

Authors and Affiliations

  • Takeo Shimidzu
  • Tokio Yamabe
  • Tohru Sato
  • Kazuyoshi Tanaka
  • Yasuhiko Shirota
  • Toyoki Kunitake
  • Masamichi Fujihira
  • Akira Fujishima
  • Yoshio Nosaka
  • Masashi Kunitake
  • Kingo Itaya

There are no affiliations available

Personalised recommendations