Skip to main content

Long-Term Changes of Corticostriatal Synaptic Transmission: Possible Implication for Motor Memory

  • Conference paper

Summary

Intracellular and extracellular recordings from striatal neurons maintained in brain slices have shown that the activation of corticostriatal terminals produces excitatory postsynaptic potentials (EPSPs) mediated by the release of excitatory amino acids. Tetanic stimulation of cortical fibers induces long-term depression (LTD) of corticostriatal transmission. Membrane depolarization during the tetanus was required to produce LTD. LTD was not blocked by AVP indicating that the activation of NMDA receptors is not required for this event. LTD was blocked either by intracellular application of calcium (Ca2+)-chelators or by bath application of the Ca2+ channel blocker nifedipine suggesting that a rise in intracellular Ca2+ levels is necessary for the generation of striatal LTD. LTD was also blocked by inhibitors of Ca2+-dependent protein kinases. The role of metabotropic glutamate receptors (mGluRs) and of dopamine (DA) receptors in the formation of this form of synaptic plasticity was studied by utilizing different pharmacological and physiological approaches. When NMDA receptors were deinactivated by removing magnesium (Mg2+) from the external medium, the same tetanic stimulation which in control condition produced LTD, under this condition caused long-term potentiation (LTP) of synaptic transmission. LTP was fully blocked by NMDA-receptor antagonists. Our findings show that in the striatum it is possible to induce both LTD and LTP of excitatory synaptic transmission. These forms of synaptic plasticity may play a role in motor memory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alger BE, Teyler TJ (1976). Long-term and short-term plasticity in the CA1, CA3 and dentate regions of the hippocampal slice. Brain Res 110: 463–480.

    Article  PubMed  CAS  Google Scholar 

  • Artola A, Brocher S, Singer W (1990) Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347: 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J Physiol (London) 232: 331–356.

    CAS  Google Scholar 

  • Brocher S, Artola A, Singer W (1992) Intracellular injection of Cat+ chelators blocks induction of long-term depression in rat visual cortex. Proc Natl Acad Sci 89: 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Buchwald NA, Price DD, Vernon L, Hull CD (1973) Caudate intracellular resonse to thalamic and cortical inputs. Exp Neurol 38: 311–323.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Mercuri NB, Bernardi, G (1990) Synaptic and intrinsic control of membrane excitability of neostriatal neurons. II. An in vitro analysis. J Neurophysiol 63: 663–675.

    Google Scholar 

  • Calabresi P, Maj R, Mercuri NB, Bernardi, G (1992a) Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett 142: 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Mercuri NB, De Murtas M, Bernardi G (1991) Involvement of GABA systems in the feed-back regulation of glutamate-and GAGA- mediated synaptic potentials in the striatum. J Physiol 440: 581–599.

    PubMed  CAS  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi, G (1992c) Long-term potentiation in the striatum is unmasked by removing the voltage-dependent blockade of NMDA receptor channel. Eur J Neurosci 4: 929–935.

    Article  PubMed  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1993) Heterogeneity of metabotropic glutamate receptors in the striatum: electrophysiological evidence. Eur J Neurosci 5: 1370–1377.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1993) Lithium treatment blocks long-term synaptic depression in the striatum. Neuron 10: 955–962.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1994) Post-receptor mechanisms underlying striatal long-term depression. J Neurosci, in press.

    Google Scholar 

  • Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G (1992b) Longterm synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12: 4224–4233.

    PubMed  CAS  Google Scholar 

  • Cherubini E, Herding PL, Lanfumey L, Stanzione P (1988) Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro. J Physiol 400: 677–690.

    PubMed  CAS  Google Scholar 

  • Garcia-Munoz M, Young ST, Groves PM (1992) Presynaptic longterm changes in excitability of the corticostriatal pathway. NeuroReport 3: 357–360.

    CAS  Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13: 244–254.

    Article  PubMed  CAS  Google Scholar 

  • Groves PM (1983) A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res Rev 5: 109–132.

    Article  Google Scholar 

  • Herrling PL (1985) Pharmacology of the corticocaudate excitatory postsynaptic potential in the cat: evidence for its mediation by quisqualate or kainate receptors. Neuroscience 14: 417–426.

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka 0 (1991) Basal Ganglia–possible role in motor coordination and learning. Curr Op Neurobiol 1: 638–643.

    Article  PubMed  CAS  Google Scholar 

  • Huang YY, Colley PA, Routtenberg A (1992) Postsynaptic then presynaptic protein kinase C may be necessary for long-term potentiation. Neuroscience 49: 819–827.

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fiber responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324: 113–134.

    PubMed  CAS  Google Scholar 

  • Izquierdo I (1992) Dopamine receptors in the caudate nucleus and memory processes. Trends Pharmacpl Sci 13: 7–8.

    Article  CAS  Google Scholar 

  • Kato N (1993) Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex. Proc Natl Acad Sci USA 90: 3650–3654.

    Article  PubMed  CAS  Google Scholar 

  • Kitai ST, Kocsis JD, Preston RJ, Sugimori M (1976) Monosynaptic inputs to caudate neurons identified by intracellular injection of horseradish peroxidase. Brain Res 109: 601–606.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi E, Nakano H, Morimoto M, Tamaoki T (1989) Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 159, 548–553.

    Article  PubMed  CAS  Google Scholar 

  • Kuba K, Kumamoto E (1990) Long-term potentiations in vertebrate synapses: a variety of cascades with common subprocesses. Progress Neurobiol 34: 197–269.

    Article  CAS  Google Scholar 

  • Linden DJ, Connors JA (1991) Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254: 16561659.

    Google Scholar 

  • Lovinger DM, Tyler EC, Merritt A (1993) Short-and long-term synaptic depression in rat neostriatum. J Neurophysiol, 70: 1937–1949.

    PubMed  CAS  Google Scholar 

  • Lovinger DM, Wong KL, Murakami K, Routtenberg A (1987) Protein kinase C inhibitors eliminate hippocampal long-term potentiation. Brain Res 436: 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypothesis. Science 224: 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Larson J, Kelso S, Barrionuevo G, Schotter F (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305: 719–721.

    Article  PubMed  CAS  Google Scholar 

  • Madison DW, Malenka, RC, Nicoll RA (1991) Mechanisms underlying long-term potentiation of synaptic transmission. Annu Rev Neurosci 14: 379–397.

    Article  PubMed  CAS  Google Scholar 

  • Malinow R, Madison DV, Tsien RW (1988) Persistent protein kinase activity underlies long-term potentiation (1988). Nature 335: 820–824.

    Article  PubMed  CAS  Google Scholar 

  • Nahorski SR, Ragan CI, Challis RAJ (1991) Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol Sci 12: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D, Pilon C, Giros B, Sokoloff P, Matres M, Schwartz J (1991) Dopamine activation of the arachidonic acid cascade as a basis for Dl/D2 receptor synergism. Nature 353: 164–167.

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Cuenod M (1979) Glutamate release in vitro from corticostriatal terminal. Brain Res 176: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai M (1990) Calcium is an intracellular mediator of the climbing fiber in the induction of cerebellar long-term depression. Proc Natl Acad Sci USA 87: 3383–3385.

    Article  PubMed  CAS  Google Scholar 

  • Seitz RJ, Roland PE, Bohm C, Greitz T, Stone-Elander S (1990) Motor learning in man: a positron emission tomographic study. NeuroReport 1: 17–20.

    Google Scholar 

  • Spencer HJ (1976) Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl-ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Res 102: 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Walsh JP (1993) Depression of excitatory synaptic input in rat striatal neurons. Brain Res 608: 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Walsh JP, Hull CD, Levine MS, Buchwald NA (1989) Kynurenic acid antagonizes the excitatory postsynaptic potential elicited in neostriatal neurons in the in vitro slice of the rat. Brain Res 480: 290–293.

    Article  PubMed  CAS  Google Scholar 

  • Wilson C (1993) Corticostriatal neurons of the medial agranular cortex of rats. J. Neurophysiol., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Tokyo

About this paper

Cite this paper

Calabresi, P., Pisani, A., Mercuri, N.B., Gattoni, G., Tolu, M., Bernardi, G. (1995). Long-Term Changes of Corticostriatal Synaptic Transmission: Possible Implication for Motor Memory. In: Kimura, M., Graybiel, A.M. (eds) Functions of the Cortico-Basal Ganglia Loop. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68547-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68547-0_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68549-4

  • Online ISBN: 978-4-431-68547-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics