Skip to main content

Corticostriatal Neurons of the Medial Agranular Cortex of Rats

  • Conference paper
Functions of the Cortico-Basal Ganglia Loop

Summary

The corticostriatal projection is not a single pathway, but rather a number of separate parallel projections arising from distinct classes of corticostriatal cells differentially distributed among the various participating cortical regions. It is likely that these various channels in the corticostriatal projection are carrying different kinds of information as well as distributing it in different patterns among the neurons of the neostriatum, but this is not yet known for certain. The evidence for the existence of diverse corticostriatal cell types will be reviewed here along with the differences between them in structure and function, so far as these are currently known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arikuni T and Kubota K (1986) The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: A retrograde study using HRP-Gel. J. Comp. Neurol. 244: 492–510.

    Article  PubMed  CAS  Google Scholar 

  • Bauswein E, Fromm C and Preuss A (1989) Corticostriatal cells in comparison with pyramidal tract neurons: contrasting properties in the behaving monkey. Brain Res. 493: 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Catsman-Berrovoets CE, Lemon RN, Verbergh CA, Bentivoglio M and Kuypers HGJM (1980) Absence of callosal collaterals derived from rat corticospinal neurons. A study using fluorescent retrograde tracing and electrophysiological techniques. Exp. Brain Res. 39: 433–440.

    Google Scholar 

  • Cowan RL and Wilson CJ (1994) Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol. 71: 17–32

    PubMed  CAS  Google Scholar 

  • Donoghue JP and Herkenham M (1986) Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat. Brain Res. 365: 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Donoghue JP and Kitai ST (1981) A collateral pathway to the neostriatum from corticofugal neurons of the rat sensory-motor cortex: an intracellular HRP study. J. Comp. Neurol. 210: 1–13.

    Article  Google Scholar 

  • Fisher RS, Shiota C, Levine MS, Hull CD and Buchwald NA (1984) Interhemispheric organization of corticocaudate projections in the cat: a retrograde double-labelling study. Neurosci. Letters 48: 369–373.

    Google Scholar 

  • Flaherty AW and Graybiel AM (1993) Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. J Neurosci 13: 1120–37.

    PubMed  CAS  Google Scholar 

  • Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311: 461–4.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1989) The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. Science 246: 385–8.

    Article  PubMed  CAS  Google Scholar 

  • Hedreen JC (1977) Corticostriatal cells identified by the peroxidase method. Neurosci. Letters 4: 1–7.

    Article  CAS  Google Scholar 

  • Hull CD, Bernardi G and Buchwald NA (1970) Intracellular responses of caudate neurons to brain stem stimulation. Brain Res. 22: 163–179.

    Article  PubMed  CAS  Google Scholar 

  • Jinnai K and Matsuda Y. Neurons of the motor cortex projecting commonly on the caudate nucleus and the lower brain stem in the cat. Neurosci. Letters 13: 121–126.

    Google Scholar 

  • Jones EG, Coulter JD, Burton H and Porter R (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J. Comp. Neurol. 173: 53–80.

    Google Scholar 

  • Kawaguchi Y, Wilson CJ and Emson PC (1989) Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J. Neurophysiol., 62: 1052–1068.

    PubMed  CAS  Google Scholar 

  • Kemp JM and Powell TPS (1971a) The synaptic organization of the caudate nucleus. Phil. Trans. R.Soc. Lond. B. 262: 413–427

    Article  CAS  Google Scholar 

  • Kemp JM and Powell TPS (1971b) The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: A study with the Golgi method. Phil. Trans. R. Soc. Lond. B., 262: 429–439.

    Article  CAS  Google Scholar 

  • Kita H and Kitai ST (1988) Amygdaloid-striatal projections in the rat: light and electron microscopic analysis with the PHA-L method. J. Comp. Neurol. 298: 40–49.

    Article  Google Scholar 

  • Kitai ST, Kocsis JD and Wood J (1976) Origin and characteristics of the cortico-caudate afferents: an anatomical and electrophysiological study. Brain Res 118: 137–141.

    Article  PubMed  CAS  Google Scholar 

  • Kocsis JD and Kitai ST (1977) Dual excitatory inputs to caudate spiny neurons from substantia nigra stimulation. Brain Res. 138: 271–283.

    Article  PubMed  CAS  Google Scholar 

  • Landry P, Wilson CJ and Kitai ST (1984) Morphological and electrophysiological characteristics of pyramidal tract neurons in the rat. Exp. Brain Res. 177–190.

    Google Scholar 

  • Malach R and Graybiel AM (1986) Mosaic architecture of the somatic sensory-recipient sector of the cat’s striatum. J. Neuroscience 6: 3436–3458.

    CAS  Google Scholar 

  • Miller R (1975) Distribution and properties of commissueal and other neurons in cat sensory motor cortex. J. Comp. Neurol. 164: 361–374.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale CWJr. and Graybiel AM (1990) A simple ordering of neocortical areas established by the compartmental organization of their striatal projections. Proc. Natl. Acad. Sci. USA, 87: 6196–6199.

    Article  PubMed  Google Scholar 

  • Ramony Cajal S (1911) Histologie du Systeme Nerveux de l’Homme et des Vertebres Ch. 23 (translation by J.W. Haycock and S. Bro, Behavioral Biology, 14: 387–402, 1975 ).

    Article  Google Scholar 

  • Royce GJ (1982) Laminar origin of cortical neurons which project upon the caudate nucleus: A horseradish peroxidase investigation in the cat. J. Comp. Neurol. 205: 8–29.

    Article  PubMed  CAS  Google Scholar 

  • Royce GJ and Bromley S (1984) Fluorescent double labeling studies of thalamostriatal and corticostriatal neurons. In: The Basal Ganglia, J.S. McKenzie, R.E. Kemm and L.N. Wilcock (eds.) Plenum, New York, pp. 131–146.

    Google Scholar 

  • Schwab M, Agid Y, Glowinski J and Thoenen H (1977) Retrograde axonal transport of 125I-tetanus toxin as a tool for tacing fiber connections in the central nervous system: onnections of the rostral part of the rat neostriatum. Brain Res., 126: 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ (1986) Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral neocortex. Brain Res 367: 201–13.

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ (1987) Morphology and synaptic connections of crossed corticostriatal neurons in the rat. J Comp Neurol 263: 567–80.

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Chang HT and Kitai ST (1982) Origins of post-synaptic potentials evoked in identified neostriatal neurons by stimulation in substantia nigra. Exp. Brain Res. 45: 157–167.

    Google Scholar 

  • Wilson CJ and Xu ZC Morphological differences between corticostriatal fibers terminating in the patch and matrix compartments of rat neostriatum. Soc. Neuroscience 1988.

    Google Scholar 

  • Xu ZC, Wilson CJ and Emson PC (1991) Restoration of thalamostriatal projections in rat neostriatal grafts: An electron microscopic analysis. J. Comp. Neuro1. 302: 197–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Tokyo

About this paper

Cite this paper

Wilson, C.J. (1995). Corticostriatal Neurons of the Medial Agranular Cortex of Rats. In: Kimura, M., Graybiel, A.M. (eds) Functions of the Cortico-Basal Ganglia Loop. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68547-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68547-0_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68549-4

  • Online ISBN: 978-4-431-68547-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics