Skip to main content

The Role of Dopamine in Frontal Motor Cortical Functions of Monkeys

  • Conference paper

Summary

Like the striatum, the frontal motor cortices receive dopaminergic fibers from midbrain dopamine cells and contain high levels of dopamine receptors. To reveal the role of dopamine in the frontal cortical areas for controlling voluntary movements, we examined the effects of application of selective dopamine antagonists (SCH23390 for D1 receptors and sulpiride for D2 receptors) to the dorsolateral prefrontal cortex (PFC), dorsal premotor cortex (PMd) and motor cortex (MC) while monkeys performed memory-guided and visually guided response tasks requiring directional movements. Application of the D1-dopamine antagonist SCH23390 to these areas had a significant effect on both behavior and neuron activities. At the behavioral level, local injections of SCH23390 had different effects in the different frontal areas examined. In the dorsolateral PFC, local injection of SCH23390 induced errors and increased reaction time (from a visual go signal to movement onset) for memory-guided saccades, whereas it had no effects on visually guided saccades. In the PMd, SCH23390 induced errors and increased both reaction time and movement time (from movement onset to offset) for both memory-guided and visually guided reaching movements. Finally, in the MC, SCH23390 did not increase errors or reaction time, but did increase movement time for both the memory-guided and visually guided reaching movements. At the neuron level, iontophoretic application of SCH23390 decreased task-related activities, and also decreased directional tuning of the activities in all of the areas examined. These findings suggest that dopamine in the frontal motor cortices plays a role in facilitating a series of processes for voluntary movement via activation of D1-dopamine receptors: the working memory process for guiding movements in the PFC, preparation for and initiation of movements in the PMd, and execution of movements in the MC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366 - 375

    Article  PubMed  CAS  Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14: 21 - 27

    Article  PubMed  CAS  Google Scholar 

  • Bischoff S, Heinrich M, Sounag JM (1986) The D-1 dopamine receptor antagonist SCH23390 also interacts potently with brain serotonin (5-HT2) receptors. Eur J Pharmacol 129: 367370

    Google Scholar 

  • Camps M, Cortes R, Gueye B, Probs A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D2 sites. Neuroscience 28: 275 - 290

    Article  PubMed  CAS  Google Scholar 

  • Cortes R, Gueye B, Pazos A, Probs A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D1 sites. Neuroscience 28: 263 - 273

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Sibley DR, Hamblin NW (1983) The classification of dopamine receptors: relationship to radioligand binding. Annu Rev Neurosci 6: 43 - 71

    Article  PubMed  CAS  Google Scholar 

  • Evarts EV (1981) Role of motor cortex in voluntary movements in primates. In Brooks VB (ed) Handbook of Physiology, Nervous System II. American Physiological Society, Bethesda MD, pp 1083 - 1120

    Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 61: 331 - 349

    PubMed  CAS  Google Scholar 

  • Gaspar P, Stepniewska I, Kaas JH (1992) Topographical and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. J Comp Neurol 325: 1 - 21

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representation memory. In Mountcastle VB, Plum F, Geiger SR (eds) Handbook of Physiology, Nervous System V. American Physiological Society, Bethesda MD, pp 373 - 417

    Google Scholar 

  • Goldman-Rakic PS, Lidow MS, Gallager DW (1990) Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10: 2125 - 2138

    PubMed  CAS  Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989) Functional properties of monkey caudate neurons. I. Activities related to saccade eye movements. J Neurophysiol 61: 780-798

    Google Scholar 

  • Hyttel J (1983) SCH23390 - the first selective dopamine D1 antagonist. Eur J Pharmacol 91: 153 - 154

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93 - 96

    Article  PubMed  CAS  Google Scholar 

  • Kurata K, Hoffman DS, Kawamoto I (1991) Effects of muscimol injection into the dorsal and ventral aspects of the premotor cortex in monkeys performing a conditional motor task. Soc Neurosci Abstr 17: 443. 8

    Google Scholar 

  • Lewis DA, Foote SL, Goldstein M, Morrison JH (1988) The dopaminergic innervation of monkey prefrontal cortex: a tyrosine hydroxylase immunohistochemical study. Brain Res 449: 225 - 243

    Article  PubMed  CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Rakic P, Innis RB (1989) Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride. Proc Natl Acad Sci USA 86: 6412 - 6416

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T (1987) Catecholamine sensitivities of neurons related to a visual reaction time task in the monkey prefrontal cortex. J. Neurophysiol 58: 1100 - 1122

    PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251: 947 - 950

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (in press) The role of the D1- dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J. Neurophysiol

    Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1990) Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63: 1385 - 1400

    PubMed  CAS  Google Scholar 

  • Sawaguchi T, Yamane I, Kubota K (1992) Involvement of D 1 dopamine receptors in premotor cortical functions in monkeys. Soc Neurosci Abstr 18: 355. 11

    Google Scholar 

  • Sawaguchi T, Yamane I, Kubota K (1993) D 1 dopamine antagonist suppresses neuronal activity related to reaching movements in the premotor cortex of monkeys. Soc Neurosci Abstr 18: 498. 1

    Google Scholar 

  • Smiley JF, Goldman-Rakic PS (1993) Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide ( SEDS) immunolabeling technique. Cerebral Cortex 3: 223-238

    Google Scholar 

  • Sokoloff P, Giros B, Matres M-P, Bourhenet M-L, Schwartz J-C (1990) Molecular cloning and characterization of a novel dopamine receptor ( D3) as a target of neuroleptics. Nature 347: 146-151

    Google Scholar 

  • Strange PG (1991) Interesting times for dopamine receptors. Trends Neurosci 14: 43 - 45

    Article  PubMed  CAS  Google Scholar 

  • Weinrich M, Wise SP (1982) The premotor cortex of the monkey. J Neurosci 2: 1329 - 1345

    PubMed  CAS  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1993) Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cerebral Cortex 3: 199 - 222

    Article  PubMed  CAS  Google Scholar 

  • Wise SP (1985) The primate premotor cortex: past, present and preparatory. Annu Rev Neurosci 8: 1 - 19

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Tokyo

About this paper

Cite this paper

Sawaguchi, T. (1995). The Role of Dopamine in Frontal Motor Cortical Functions of Monkeys. In: Kimura, M., Graybiel, A.M. (eds) Functions of the Cortico-Basal Ganglia Loop. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68547-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68547-0_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68549-4

  • Online ISBN: 978-4-431-68547-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics